VERTEX-WEIGHTED WIENER POLYNOMIALS OF SUBDIVISION-RELATED GRAPHS

被引:2
作者
Azari, Mahdieh [1 ]
Iranmanesh, Ali [2 ]
Doslic, Tomislav [3 ]
机构
[1] Islamic Azad Univ, Kazerun Branch, Dept Math, Kazerun, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
[3] Univ Zagreb, Fac Civil Engn, Zagreb 10000, Croatia
关键词
vertex-weighted Wiener numbers; vertex-weighted Wiener polynomials; subdivision graphs;
D O I
10.7494/OpMath.2016.36.1.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Singly and doubly vertex-weighted Wiener polynomials are generalizations of both vertex-weighted Wiener numbers and the ordinary Wiener polynomial. In this paper, we show how the vertex-weighted Wiener polynomials of a graph change with subdivision operators, and apply our results to obtain vertex-weighted Wiener numbers.
引用
收藏
页码:5 / 23
页数:19
相关论文
共 29 条
[1]  
Alizadeh Y, 2014, GLAS MAT, V49, P1
[2]  
Andova V, 2012, ARS MATH CONTEMP, V5, P73
[3]   Sharp lower bounds on the Narumi-Katayama index of graph operations [J].
Azari, Mahdieh .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 :409-421
[4]  
Azari M, 2011, ARS COMBINATORIA, V100, P113
[5]  
Azari M, 2013, MATCH-COMMUN MATH CO, V70, P901
[6]   Computing the eccentric-distance sum for graph operations [J].
Azari, Mandieh ;
Iranmanesh, Ali .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2827-2840
[7]  
Cataldo F., 2010, INT J CHEM MODEL, V2, P165
[8]  
Darafsheh MR, 2011, ARS COMBINATORIA, V100, P289
[9]  
Diudea M.V., 2001, MOL TOPOLOGY
[10]  
DIUDEA MV, 1995, MATCH COMMUN MATH CO, V32, P71