DETERMINATION OF LIMIT-CYCLES FOR 2-DIMENSIONAL DYNAMICAL-SYSTEMS

被引:15
作者
GIACOMINI, H
VIANO, M
机构
[1] Laboratoire de Modèles de Physique Mathématique, Faculté des Sciences et Techniques, Université de Tours
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.222
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider in this paper two-dimensional dynamical systems of the form x=P(x,y),y=Q(x,y), where P and Q are analytic functions. We introduce a method for finding the limit cycles of the system. This method consists of searching for a power series solution of the equation P(partial derivative V/partial derivative x)+Q(partial derivative V/partial derivative y)=[(partial derivative P/partial derivative x)+(partial derivative Q/partial derivative y)]V. The limit cycles are determined from the condition V(x,y)=0.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 9 条
[1]  
Arnold V.I., 1988, ENCY MATH SCI, V1-2
[2]   NONPERTURBATIVE (BUT APPROXIMATE) METHOD FOR SOLVING DIFFERENTIAL-EQUATIONS AND FINDING LIMIT-CYCLES [J].
DELAMOTTE, B .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3361-3364
[3]  
LLOYD NG, 1988, LONDON MATH SOC LECT, V127, P192
[4]  
Nemytskii V., 1960, QUALITATIVE THEORY D
[5]  
PERKO L, 1991, TEXTS APPLIED MATH, V7
[6]  
POINCARE H, 1929, THESIS PARIS
[7]   LOCI OF LIMIT-CYCLES [J].
POLAND, D .
PHYSICAL REVIEW E, 1994, 49 (01) :157-165
[8]  
REYN JW, 1987, NIEUW ARCH WISK, V5, P107
[9]  
YE Y, 1986, TRANSLATIONS MATH MO, V66