Adaptive stability in combinatorial optimization problems

被引:0
|
作者
Ivanko, E. E. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, NN Krasovsky Inst Math & Mech, Moscow, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2014年 / 20卷 / 01期
关键词
stability; combinatorial optimization problem; adaptation of solutions; disturbance of the initial data set;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general approach to the construction of necessary, sufficient, and necessary and sufficient conditions that allow to "adapt" a known optimal solution of an abstract combinatorial problem with a certain structure to a change in the initial data set for a fixed cost function "easily" from the combinatorial point of view. We call this approach adaptive stability. Apparently, it is the first time that the approach is described for an abstract problem in a rigorous mathematical formalization.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [11] Stability Analysis for Stochastic Optimization Problems
    骆建文
    Journal of Shanghai Jiaotong University, 2007, (05) : 684 - 687
  • [12] ON THE STABILITY OF THE FEASIBLE SET IN OPTIMIZATION PROBLEMS
    Dinh, N.
    Goberna, M. A.
    Lopez, M. A.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2254 - 2280
  • [13] Interactive stability of vector optimization problems
    Kassem, MA
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (03) : 616 - 622
  • [14] New-paradigm CMOS Ising Computing for Combinatorial Optimization Problems
    Yamaoka, Masanao
    2017 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM), 2017, : 13 - 14
  • [15] Combinatorial optimization problems related to the committee polyhedral separability of finite sets
    Vl. D. Mazurov
    M. Yu. Khachay
    M. I. Poberii
    Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 93 - 107
  • [16] Combinatorial Optimization Problems Related to the Committee Polyhedral Separability of Finite Sets
    Mazurov, Vl. D.
    Khachay, M. Yu.
    Poberii, M. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (Suppl 2) : S93 - S107
  • [17] A generic solver based on functional parallelism for solving combinatorial optimization problems
    Tagashira, Shigeaki
    Mito, Masaya
    Fujita, Satoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (06) : 1940 - 1947
  • [18] A New Local Search Based Ant Colony Optimization Algorithm for Solving Combinatorial Optimization Problems
    Hassan, Md. Rakib
    Islam, Md. Monirul
    Murase, Kazuyuki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (05): : 1127 - 1136
  • [19] ON THE STABILITY THEORY IN NONCONVEX INFINITE OPTIMIZATION PROBLEMS
    Zhao, Xiaopeng
    Fangi, Donghui
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (06) : 1115 - 1127
  • [20] Stability analysis of a class of sparse optimization problems
    Xu, Jialiang
    Zhao, Yun-Bin
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (04): : 836 - 854