REDUCED MATRICES AND Q-LOG-CONCAVITY PROPERTIES OF Q-STIRLING NUMBERS

被引:63
作者
LEROUX, P
机构
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(90)90006-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the q-log-concavity of the q-Stirling numbers of the second kind, which was recently conjectured by Lynne Butler, by suitably extending her injective proof of the analogous property of the q-binomial coefficients. For this we introduce new combinatorial interpretations of Stirling numbers of both kinds in terms of "0-1 tableaux" inspired from a row-reduced echelon matrix representation of restricted growth functions. Other related results, methods, counterexamples, and conjectures are discussed. © 1990.
引用
收藏
页码:64 / 84
页数:21
相关论文
共 21 条
[1]  
BUTLER LM, 1987, P AM MATH SOC, V101, P771
[2]  
BUTLER LM, 1990, J COMB THEORY A, V54, P53
[3]   On Abelian fields [J].
Carlitz, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :122-136
[4]   MOBIUS CATEGORIES AND FUNCTORS - GENERAL SETTING FOR MOBIUS-INVERSION [J].
CONTENT, M ;
LEMAY, F ;
LEROUX, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (02) :169-190
[5]   Q-COUNTING ROOK CONFIGURATIONS AND A FORMULA OF FROBENIUS [J].
GARSIA, AM ;
REMMEL, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :246-275
[6]   BINOMIAL DETERMINANTS, PATHS, AND HOOK LENGTH FORMULAS [J].
GESSEL, I ;
VIENNOT, G .
ADVANCES IN MATHEMATICS, 1985, 58 (03) :300-321
[7]   Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS [J].
GOULD, HW .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) :281-&
[8]  
Knuth DE., 1971, J COMBIN THEORY A, V10, P178, DOI DOI 10.1016/0097-3165(71)90022-7
[9]  
LEROUX P, 1982, APR SIAM C APPL LIN
[10]  
LEROUX P, 1983, ALGEBRE LINEAIRE UNE