THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR

被引:24
|
作者
Fursov, V. A. [1 ,2 ]
Bibikov, S. A. [1 ,2 ]
Bajda, O. A. [2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Moscow, Russia
[2] Natl Res Univ, SP Korolyov Samara State Aerosp Univ, Samara, Russia
关键词
hyperspecter imagery; classification; specter angle mapper; conjugacy indicator;
D O I
10.18287/0134-2452-2014-38-1-154-158
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider an algorithm of hyperspectral images thematic classification using conjugacy indicator as a proximity measure. This measure is a generalized spectral angle mapper (SAM) implemented in hyperspectral imagery processing software ENVI. In this case, we use the cosine of an angle between considered vector and subspace, which is spanned by class vectors, instead of the cosine of an angle between considered vector and the mean vector of the class. Paper describes modification of a method based on partitioning of the class into subclasses and based on reduction of vectors to zero mean value. The results of synthetic experiments show higher classification quality than SAM.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 50 条
  • [21] Efficient Unsupervised Classification of Hyperspectral Images Using Voronoi Diagrams and Strong Patterns
    Bilius, Laura Bianca
    Pentiuc, Stefan Gheorghe
    SENSORS, 2020, 20 (19) : 1 - 16
  • [22] CLASSIFICATION OF HYPERSPECTRAL IMAGES USING AUTOMATIC MARKER SELECTION AND MINIMUM SPANNING FOREST
    Tarabalka, Yuliya
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 131 - +
  • [23] Hyperspectral images classification and Dimensionality Reduction using Homogeneity feature and mutual information
    Nhaila, Hasna
    Merzouqi, Maria
    Sarhrouni, Elkebir
    Hammouch, Ahmed
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [24] COMBINER OF CLASSIFIERS USING GENETIC ALGORITHM FOR CLASSIFICATION OF REMOTE SENSED HYPERSPECTRAL IMAGES
    Santos, A. B.
    Araujo, A. de A.
    Menotti, D.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4146 - 4149
  • [25] Acquiring hyperspectral remotely sensed images classification rules using inductive learning
    Sun, LX
    Zhang, YM
    HYPERSPECTRAL REMOTE SENSING AND APPLICATIONS, 1998, 3502 : 164 - 168
  • [26] SUPER PIXEL BASED CLASSIFICATION USING CONDITIONAL RANDOM FIELDS FOR HYPERSPECTRAL IMAGES
    Hu, Yang
    Monteiro, Sildomar T.
    Saber, Eli
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2202 - 2205
  • [27] Extinction Profiles Fusion for Hyperspectral Images Classification
    Fang, Leyuan
    He, Nanjun
    Li, Shutao
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1803 - 1815
  • [28] Improving the Accuracy of Land Cover Classification Using Fusion of Polarimetric SAR and Hyperspectral Images
    Shokrollahi, Mahin
    Ebadi, Hamid
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2016, 44 (06) : 1017 - 1024
  • [29] Improving the Accuracy of Land Cover Classification Using Fusion of Polarimetric SAR and Hyperspectral Images
    Mahin Shokrollahi
    Hamid Ebadi
    Journal of the Indian Society of Remote Sensing, 2016, 44 : 1017 - 1024
  • [30] Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis
    Zhu, Fengle
    Yao, Haibo
    Hruska, Zuzana
    Kincaid, Russell
    Brown, Robert
    Bhatnagar, Deepak
    Cleveland, Thomas
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY VII, 2015, 9488