Construction of a classifier using AdaBoost for information filtering

被引:1
|
作者
Yanagimoto, Hidekazu [1 ]
Omatu, Sigeru [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Comp & Syst Sci, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
关键词
Intermation filtering; Genetic algorithm; AdaBoost;
D O I
10.1007/s10015-004-0321-9
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We describe an information filtering system using AdaBoost. To realize the filtering system, we created a user profile which presents the user's interests. Since the user's interests are complex, the user profile becomes a nonlinear discriminant function. However, it is difficult to decide on an appropriate discriminant function. We used AdaBoost to modify the appropriate user profile. AdaBoost is an ensemble algorithm which combines weak learners and improves the accuracy of a classifier. In this method, the weak learners for AdaBoost is a linear discriminant function which is created with a genetic algorithm. We carried out experiments for an information filtering service on an NTCIR2 test collection, and we discuss the effectiveness of the method.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 50 条
  • [41] Automatic Face Recognition System Using Deep Convolutional Mixer Architecture and AdaBoost Classifier
    Abbas, Qaisar
    Albalawi, Talal Saad
    Perumal, Ganeshkumar
    Celebi, M. Emre
    Ding, Han
    Xi, Wei
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [42] Construction of Sequential Classifier Using Confusion Matrix
    Burduk, Robert
    Trajdos, Pawel
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2013, 2013, 8104 : 401 - 407
  • [43] Indian Classical Dance Action Identification using Adaboost Multiclass Classifier on Multifeature Fusion
    Kumar, K. V. V.
    Kishore, P. V. V.
    Kumar, D. Anil
    Kumar, E. Kiran
    2018 CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION ENGINEERING SYSTEMS (SPACES), 2018, : 167 - 170
  • [44] Automated Zebrafish-based Toxicity Test using Bat Optimization and AdaBoost Classifier
    Tharwat, Alaa
    Zawbaa, Hossam M.
    Gaber, Tarek
    Hassanien, Aboul Ella
    Snasel, Vaclav
    2015 11TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2015, : 169 - 174
  • [45] Detection of Abnormal Event in Complex Situations Using Strong Classifier Based on BP Adaboost
    Zhang, Yuqi
    Wang, Tian
    Qiao, Meina
    Zhu, Aichun
    Li, Ce
    Snoussi, Hichem
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 245 - 256
  • [46] Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier
    Hu, Gensheng
    Yin, Cunjun
    Wan, Mingzhu
    Zhang, Yan
    Fang, Yi
    BIOSYSTEMS ENGINEERING, 2020, 194 : 138 - 151
  • [47] A high reliability classifier using decision trees and AdaBoost for recognizing handwritten Bangla numerals
    Xiang, Jian-Ying
    Sun, Shi-Liang
    Lu, Yue
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1155 - 1160
  • [48] An effective pornographic web filtering system using a probabilistic classifier
    Jantima, P
    Sumnuk, P
    Chumsak, S
    Rapeeporn, C
    Anirut, C
    Proceedings of the 11th Joint International Computer Conference, 2005, : 601 - 607
  • [49] Spam Filtering using Association Rules and Naive Bayes Classifier
    Yang, Tianda
    Qian, Kai
    Lo, Dan Chia-Tien
    Al Nasr, Kamal
    Qian, Ying
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 638 - 642
  • [50] THE REDUCTION OF THE FALSE POSITIVE DETECTIONS NUMBER FOR THE ADABOOST CLASSIFIER
    Popa, Mircea
    Majdik, Andras
    Lazea, Gheorghe
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 1093 - 1094