PERIODIC FORCING OF A BROWNIAN PARTICLE

被引:93
作者
FAUCHEUX, LP
STOLOVITZKY, G
LIBCHABER, A
机构
[1] Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10021
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.5239
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect on a Brownian particle (2 μm diameter polystyrene sphere in water) of an infrared optical tweezer moving in a circle. For a given potential depth of the optical trap, three different regimes for the particle motion are observed as a function of the trap velocity. For small velocity of the tweezer (typically <100 μm/s), the particle is trapped and moves with the beam. For intermediate velocities (between 100 μm/s and 3 mm/s), the particle escapes but is caught by the returning trap: its mean angular velocity scales asymptotically as the inverse of the trap rotation frequency. For large tweezer velocities (>3 mm/s), the particle diffuses along the circle but is confined in the radial direction. We describe these observations by a simple deterministic model. We justify the use of this model solving the corresponding Fokker-Planck equation. © 1995 The American Physical Society.
引用
收藏
页码:5239 / 5250
页数:12
相关论文
共 10 条
  • [1] Ashkin A., Phys. Rev. Lett., 24, (1970)
  • [2] Ashkin A., Dziedic J.M., Bjorkholm J.E., Chu S., Opt. Lett., 11, (1986)
  • [3] Svoboda K., Block S., Annu. Rev. Biophys. Biomol. Struct., 23, (1994)
  • [4] Simon A., Libchaber A., Phys. Rev. Lett., 68, (1992)
  • [5] Einstein A., Ann. Phys. (N.Y.), 17, (1905)
  • [6] Faucheux L.P., Bourdieu L.S., Kaplan P.D., Libchaber A.J., Phys. Rev. Lett., 74, (1995)
  • [7] Risken H., The Fokker-Planck Equation, (1989)
  • [8] Van Kampen N.G., Stochastic Processes in Physics and Chemistry, North-Holland Personal Library, (1981)
  • [9] Kramers H.A., Physica (Utrecht), 7, (1940)
  • [10] Landauer R., Buttiker M., Phys. Scr., 9 T, (1985)