STRONG DIFFERENTIAL SUBORDINATION TO BRIOT-BOUQUET DIFFERENTIAL-EQUATIONS

被引:39
作者
ANTONINO, JA
ROMAGUERA, S
机构
[1] Departamento de Matematica Aplicada, ETSICCP, Universidad Politecnica
关键词
D O I
10.1006/jdeq.1994.1142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(z) be analytic in the unit disc D, let g(z) be convex in D, let f(z) be analytic in D such that z(f'(z)/f(z)) is analytic and different from zero in D, and let alpha and beta be complex numbers. The authors show that if p(z)+zp'(z)/xi(f'(xi)/f(xi))[alpha p(z)+beta]<g(z), z is an element of D, xi is an element of D, where < denotes subordination and Re{f'(xi)/f(xi)[alpha g(z)+beta]}>0 z is an element of D, xi is an element of D is satisfied, then p(z)<g(z). Further, if the differential equation q(z)+ zq'(z)/z(f'(z)/f(z))[alpha q(z)+beta]=g(z) verifying (1), has a univalent solution g(z), then sharp subordination p(z)<q(z) holds. (C) 1994 Academic Press, Inc.
引用
收藏
页码:101 / 105
页数:5
相关论文
共 6 条
[1]  
Antonino JA, 1991, MATH JPN, V36, P447
[2]  
EENIGENBURG S, 1983, INT SERIES NUMERICAL, V64, P339
[3]  
Hille E., 1976, ORDINARY DIFFERENTIA
[4]  
MILLER SS, 1985, J DIFFER EQUATIONS, V56, P295
[5]  
Pommerenke Ch., 1975, UNIVALENT FUNCTIONS
[6]  
RUSCHEWEYH S, 1979, REV ROUMAINE MATH PU, V24, P285