BELOW-GROUND CARBON DISTRIBUTION IN BARLEY (HORDEUM VULGARE L.) WITH AND WITHOUT NITROGEN FERTILIZATION

被引:36
|
作者
JOHANSSON, G
机构
[1] Department of Soil Sciences, Division of Plant Nutrition and Soil Fertility, Swedish University of Agricultural Sciences, Uppsala, S-750 07
关键词
BARLEY; C-14; C-DISTRIBUTION; N-FERTILIZER; RHIZOSPHERE; ROOTS;
D O I
10.1007/BF00018849
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61-mu-mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously C-14-labelled CO2, C-14 was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated C-14 was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of C-14-labelled root material and C-14 remaining in soil) was greater with no N-supply (19% of net assimilated C-14) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated C-14 below ground and the release of C-14 from growing roots was relatively small.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 50 条
  • [41] Transformation of barley (Hordeum vulgare L.) with cytokinin dehydrogenase gene
    Vyroubalova, Sarka
    Ohnoutkova, Ludmila
    Galuszka, Petr
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2008, 44 : S68 - S68
  • [42] Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.)
    Karsai, I
    Meszaros, K
    Bedo, Z
    Hayes, PM
    Pan, A
    Chen, F
    ACTA BIOLOGICA HUNGARICA, 1997, 48 (01): : 67 - 76
  • [43] Capability of the TrueColor Sensor Array for Determining the Nitrogen Supply in Winter Barley (Hordeum vulgare L.)
    Christ, Andreas
    Schmittmann, Oliver
    Lammers, Peter Schulze
    SENSORS, 2022, 22 (16)
  • [44] Genetic architecture of quantitative traits in barley (Hordeum vulgare L.)
    Raikwar, Rudrasen Singh
    Upadhyay, A. K.
    Gautam, U. S.
    Singh, V. K.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2014, 74 (01) : 93 - 97
  • [45] Seed priming and seedling establishment of barley (Hordeum vulgare L.)
    Abdulrahmani, B.
    Ghassemi-Golezani, K.
    Valizadeh, M.
    Asl, V. Feizi
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2007, 5 (3-4): : 179 - 184
  • [46] Genetic diversity for malting quality in barley (Hordeum vulgare L.)
    Sarkar, B.
    Verma, R. P. S.
    Mishra, B.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2008, 68 (02) : 163 - 170
  • [47] Advanced backcross QTL analysis in barley (Hordeum vulgare L.)
    K. Pillen
    A. Zacharias
    J. Léon
    Theoretical and Applied Genetics, 2003, 107 : 340 - 352
  • [48] TRANSCRIPTIONAL ACTIVITY OF TRANSLOCATED NORs IN BARLEY (HORDEUM VULGARE L.)
    Kitanova, Meglena
    Georgiev, Sevdalin
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2012, 26 (02) : 2855 - 2865
  • [49] UPTAKE OF HEAVY METALS BY MYCORRHIZAL BARLEY (HORDEUM VULGARE L.)
    Rezvani, Mohammad
    Ardakani, Mohammad Reza
    Rejali, Farhad
    Zaefarian, Faezeh
    Teimouri, Sadollah
    Noormohammadi, Ghorban
    Miransari, Mohammad
    JOURNAL OF PLANT NUTRITION, 2015, 38 (06) : 904 - 919
  • [50] Inheritance of yellow rust resistance in barley (Hordeum vulgare L.)
    Prakash, Ved
    Verma, R. P. S.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2009, 69 (02) : 99 - 101