TURAN INEQUALITIES AND ZEROS OF ORTHOGONAL POLYNOMIALS

被引:0
|
作者
Krasikov, Ilia [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
orthogonal polynomials; Turan inequalities; three term recurrence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Turan type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term recurrence pk+1=xpk-ckpk-1, with a nondecreasing sequence {ck}. As a special case they include a non-asymptotic version of Mate, Nevai and Totik result on the largest zeros of orthogonal polynomials with ck=ck(2 delta)(1+o(k(-2/3))).our proof is based on new Turan inequalituies Which are obtained by analogy with higher order laguerre in equalities.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [31] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    J. Comput. Appl. Math., 1 (168-182):
  • [32] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 168 - 182
  • [33] STIELTJES SUMS FOR ZEROS OF ORTHOGONAL POLYNOMIALS
    RONVEAUX, A
    MULDOON, ME
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) : 261 - 269
  • [34] ORTHOGONAL POLYNOMIALS WITH REGULARLY DISTRIBUTED ZEROS
    ERDOS, P
    FREUD, G
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 29 (NOV) : 521 - 537
  • [35] On the zeros of orthogonal polynomials on the unit circle
    Pilar Alfaro, Maria
    Bello-Hernandez, Manuel
    Maria Montaner, Jesus
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 134 - 154
  • [36] ASYMPTOTICS FOR THE GREATEST ZEROS OF ORTHOGONAL POLYNOMIALS
    MATE, A
    NEVAI, P
    TOTIK, V
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) : 745 - 751
  • [37] Uniform Spacing of Zeros of Orthogonal Polynomials
    Giuseppe Mastroianni
    Vilmos Totik
    Constructive Approximation, 2010, 32 : 181 - 192
  • [38] Perturbed zeros of classical orthogonal polynomials
    Campos, RG
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 143 - 153
  • [39] Zeros of polynomials embedded in an orthogonal sequence
    Beardon, Alan
    Driver, Kathy
    Jordaan, Kerstin
    NUMERICAL ALGORITHMS, 2011, 57 (03) : 399 - 403
  • [40] Asymptotics for orthogonal polynomials and separation of their zeros
    Levin, Eli
    Lubinsky, D. S.
    JOURNAL OF APPROXIMATION THEORY, 2022, 281