APPROXIMATION BY RIDGE FUNCTIONS AND NEURAL NETWORKS WITH ONE HIDDEN LAYER

被引:120
|
作者
CHUI, CK
LI, X
机构
[1] Department of Mathematics, Texas A and M University, College Station
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9045(92)90081-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the configuration of an infinite set V of vectors in Rs, s ≥ 1, for which the closure with respect to C(K) of the algebraic span of {f{hook}(〈v, ·〉):v ε{lunate} V, f{hook} ε{lunate} C(R)} is all of C(K), where K is any compact set in Rs. This configuration also guarantees that for any sigmoidal function σ ge C(R), the span of {σ(m〈v, · 〉 +k):v ε{lunate} V;m, k ε{lunate} Z} is already dense in C(K). In particular, neural networks with one hidden layer of the form ∑(I,k) ε{lunate} J c(i,k) σ(〈i,x〉+k), where k ε{lunate} Z, c(i, k) ε{lunate} R, and i ε{lunate} Zs, can be designed to approximate any continuous functions in s variables. © 1992.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条