Effect of Hysteresis on Interface Waves in Contact Surfaces

被引:0
作者
Kim, Nohyu [1 ]
Yang, Seungyong [2 ]
机构
[1] Korea Univ Technol, Dept Mechatron Engn, 307 Gajun Ri, Chunan 330860, South Korea
[2] Korea Univ Technol & Educ, Dept Mech Engn, Chunan 330860, South Korea
关键词
Interface Wave; Contact Nonlinearity; Hysteresis; Interfacial Stiffness;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti -symmetric motion. The anti -symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti -symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 7 条
[1]   Experimental and theoretical study of harmonic generation at contacting interface [J].
Biwa, S. ;
Hiraiwa, S. ;
Matsumoto, E. .
ULTRASONICS, 2006, 44 :E1319-E1322
[2]   Stiffness evaluation of contacting surfaces by bulk and interface waves [J].
Biwa, Shiro ;
Hiraiwa, Shunsuke ;
Matsumoto, Eiji .
ULTRASONICS, 2007, 47 (1-4) :123-129
[3]   Ultrasonic assessment of rough surface contact between solids from elastoplastic loading-unloading hysteresis cycle [J].
Kim, JY ;
Baltazar, A ;
Rokhlin, SI .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (08) :1911-1934
[4]  
Kim N, 2007, J KOREAN SOC NONDES, V27, P582
[5]  
Meirovitch L., 1967, ANAL METHODS VIBRATI, P403
[6]   Elasto-plastic micromechanical model for determination of dynamic stiffness and real contact area from ultrasonic measurements [J].
Pecorari, Claudio ;
Rokhlin, Stanislav I. .
WEAR, 2007, 262 (7-8) :905-913
[7]   Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications [J].
Solodov, IY .
ULTRASONICS, 1998, 36 (1-5) :383-390