Blending Brownian motion and heat equation

被引:4
|
作者
Cristiani, Emiliano [1 ]
机构
[1] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
关键词
Brownian Motion; Heat Equation; Diffusion Equation; Multiscale Methods; Statistical Properties; Coupling;
D O I
10.1166/jcsmd.2015.1089
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this short communication we present an original way to couple the Brownian motion and the heat equation. More in general, we suggest a way for coupling the Langevin equation for a particle, which describes a single realization of its trajectory, with the associated Fokker-Planck equation, which instead describes the evolution of the particle's probability density function. Numerical results show that it is indeed possible to obtain a regularized Brownian motion and a Brownianized heat equation still preserving the global statistical properties of the solutions. The results also suggest that the more macroscale leads the dynamics the more one can reduce the microscopic degrees of freedom.
引用
收藏
页码:351 / 356
页数:6
相关论文
共 50 条
  • [41] Path Regularity of the Brownian Motion and the Brownian Sheet
    Kempka, H.
    Schneider, C.
    Vybiral, J.
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 485 - 539
  • [42] Convex Hull of Brownian Motion and Brownian Bridge
    Sebek, Stjepan
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04) : 459 - 475
  • [43] Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method
    Rehman H.U.
    Akber R.
    Wazwaz A.-M.
    Alshehri H.M.
    Osman M.S.
    Optik, 2023, 289
  • [44] Path Regularity of the Brownian Motion and the Brownian Sheet
    H. Kempka
    C. Schneider
    J. Vybiral
    Constructive Approximation, 2024, 59 : 485 - 539
  • [45] Catastrophes in brownian motion
    Guz, SA
    Mannella, R
    Sviridov, MV
    PHYSICS LETTERS A, 2003, 317 (3-4) : 233 - 241
  • [46] Brownian Motion of Graphene
    Marago, Onofrio M.
    Bonaccorso, Francesco
    Saija, Rosalba
    Privitera, Giulia
    Gucciardi, Pietro G.
    Iati, Maria Antonia
    Calogero, Giuseppe
    Jones, Philip H.
    Borghese, Ferdinando
    Denti, Paolo
    Nicolosi, Valeria
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (12) : 7515 - 7523
  • [47] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [48] Brownian motion of a torus
    Thaokar, Rochish M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 317 (1-3) : 650 - 657
  • [49] Quantization of Brownian motion
    Rabei, Eqab M.
    Ajlouni, Abdul-Wali
    Ghassib, Humam B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) : 1619 - 1629
  • [50] Coupled Brownian Motion
    Sempi, Carlo
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 569 - 574