Hand Gesture Recognition Using a Radar Echo I-Q Plot and a Convolutional Neural Network

被引:33
|
作者
Sakamoto, Takuya [1 ,2 ,3 ]
Gao, Xiaomeng [4 ,5 ,6 ]
Yavari, Ehsan [4 ]
Rahman, Ashikur [1 ,7 ]
Boric-Lubecke, Olga [1 ]
Lubecke, Victor M. [1 ]
机构
[1] Univ Hawaii Manoa, Dept Elect Engn, Honolulu, HI 96822 USA
[2] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712280, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[4] Adnoviv LLC, Honolulu, HI 96822 USA
[5] Univ Calif Davis, Davis, CA 95616 USA
[6] Cardiac Mot LLC, Sacramento, CA 95817 USA
[7] Aptiv PLC, Kokomo, IN 46902 USA
基金
日本学术振兴会;
关键词
Sensor signals processing; gesture recognition; machine learning; neural network; radar;
D O I
10.1109/LSENS.2018.2866371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a hand gesture recognition technique using a convolutional neural network applied to radar echo inphase/quadrature (I/Q) plot trajectories. The proposed technique is demonstrated to accurately recognize six types of hand gestures for ten participants. The system consists of a low-cost 2.4-GHz continuous-wave monostatic radar with a single antenna. The radar echo trajectories are converted to low-resolution images and are used for the training and evaluation of the proposed technique. Results indicate that the proposed technique can recognize hand gestures with average accuracy exceeding 90%.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Hand gesture recognition using neural network based techniques
    Bobic, Vladislava
    Tadic, Predrag
    Kvascev, Goran
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 35 - 38
  • [42] Enhancement of Hand Gesture Recognition Using Convolutional Neural Networks Integrating a Combination of an Autoencoder Network and PCA
    Bousbai, Khalil
    Merah, Mostefa
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (10)
  • [43] Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
    Sahoo, Jaya Prakash
    Prakash, Allam Jaya
    Plawiak, Pawel
    Samantray, Saunak
    SENSORS, 2022, 22 (03)
  • [44] Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method
    Chen, Xiang
    Li, Yu
    Hu, Ruochen
    Zhang, Xu
    Chen, Xun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (04) : 1292 - 1304
  • [45] Hand gesture-based sign alphabet recognition and sentence interpretation using a convolutional neural network
    Rahim M.A.
    Shin J.
    Yun K.S.
    Annals of Emerging Technologies in Computing, 2020, 4 (04) : 20 - 27
  • [46] Convolutional Neural Network Based American Sign Language Static Hand Gesture Recognition
    Ahuja, Ravinder
    Jain, Daksh
    Sachdeva, Deepanshu
    Garg, Archit
    Rajput, Chirag
    INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2019, 10 (03) : 60 - 73
  • [47] Depth-based Hand Gesture Recognition using Convolutional Neural Networks
    Pyo, Jeongwon
    Ji, Sanghoon
    You, Sujeong
    Kuc, Taeyoung
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 225 - 227
  • [48] 3D separable convolutional neural network for dynamic hand gesture recognition
    Hu, Zhongxu
    Hu, Youmin
    Liu, Jie
    Wu, Bo
    Han, Dongmin
    Kurfess, Thomas
    NEUROCOMPUTING, 2018, 318 : 151 - 161
  • [49] Dynamic Hand Gesture Recognition via Electromyographic Signal Based on Convolutional Neural Network
    Song, Shouan
    Yang, Lei
    Wu, Man
    Liu, Yanhong
    Yu, Hongnian
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 876 - 881
  • [50] Radar-Based Hand Gesture Recognition Using Spiking Neural Networks
    Tsang, Ing Jyh
    Corradi, Federico
    Sifalakis, Manolis
    Van Leekwijck, Werner
    Latre, Steven
    ELECTRONICS, 2021, 10 (12)