LEVEL-SPACING DISTRIBUTIONS AND THE AIRY KERNEL

被引:85
|
作者
TRACY, CA
WIDOM, H
机构
[1] UNIV CALIF DAVIS, INST THEORET DYNAM, DAVIS, CA 95616 USA
[2] UNIV CALIF SANTA CRUZ, DEPT MATH, SANTA CRUZ, CA 95064 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(93)91114-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Scaling level-spacing distribution functions in the ''bulk of the spectrum'' in random matrix models of N x N hermitian matrices and then going to the limit N --> infinity, leads to the Fredholm determinant of the sine kernel sin pi(x - y)/pi(x - y). Similarly a double scaling limit at the ''edge of the spectrum'' leads to the Airy kernel [Ai(x)Ai'(y) - Ai'(x)Ai(y)]/(x - y). We announce analogies for this Airy kernel of the following properties of the sine kernel: the completely integrable system of PDE's found by Jimbo, Miwa, Mori and Sato; the expression, in the case of a single interval, of the Fredholm determinant in terms of a Painleve transcendent; the existence of a commuting differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general n, of the probability that an interval contains precisely n eigenvalues.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 50 条
  • [21] LEVEL-SPACING FUNCTION P(S) AT THE MOBILITY EDGE
    EVANGELOU, SN
    PHYSICAL REVIEW B, 1994, 49 (23): : 16805 - 16808
  • [22] LIMITS OF LEVEL-SPACING FLUCTUATIONS AS A CHARACTERIZATION OF QUANTUM CHAOS
    LEWENKOPF, CH
    PHYSICAL REVIEW A, 1990, 42 (04): : 2431 - 2433
  • [23] LEVEL-SPACING STATISTICS FOR THE ANDERSON MODEL IN ONE AND 2 DIMENSIONS
    SORENSEN, MP
    SCHNEIDER, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01): : 115 - 119
  • [24] Relativistic quantum level-spacing statistics in chaotic graphene billiards
    Huang, Liang
    Lai, Ying-Cheng
    Grebogi, Celso
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [25] Level-spacing distribution of localized phases induced by quasiperiodic potentials
    Yang, Chao
    Wang, Yucheng
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [26] Localization threshold of instantaneous normal modes from level-spacing statistics
    Ciliberti, S
    Grigera, TS
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [27] Universal level-spacing statistics in quasiperiodic tight-binding models
    Grimm, U
    Römer, RA
    Schreiber, M
    Zhong, JX
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 : 564 - 567
  • [28] Level-spacing universality in a random-matrix model with an external source
    Hikami, S
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1173 - 1179
  • [29] Level-spacing statistics and spectral correlations in diffuse van der Waals clusters
    Haldar, S. K.
    Chakrabarti, B.
    Chavda, N. D.
    Das, T. K.
    Canuto, S.
    Kota, V. K. B.
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [30] LEVEL-SPACING DISTRIBUTION IN THE TIGHT-BINDING MODEL OF FCC CLUSTERS
    MANSIKKAAHO, J
    MANNINEN, M
    HAMMAREN, E
    PHYSICAL REVIEW B, 1993, 47 (16): : 10675 - 10684