Stability Issues for Selected Stochastic Evolutionary Problems: A Review

被引:11
作者
Cardone, Angelamaria [1 ]
Conte, Dajana [1 ]
D'Ambrosio, Raffaele [2 ]
Paternoster, Beatrice [1 ]
机构
[1] Univ Salerno, Dept Math, I-84084 Fisciano, Italy
[2] Univ Aquila, Dept Engn & Comp Sci & Math, I-67100 Laquila, Italy
来源
AXIOMS | 2018年 / 7卷 / 04期
关键词
stochastic differential equations; stochastic multistep methods; stochastic Volterra integral equations; mean-square stability; asymptotic stability;
D O I
10.3390/axioms7040091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review some recent contributions of the authors regarding the numerical approximation of stochastic problems, mostly based on stochastic differential equations modeling random damped oscillators and stochastic Volterra integral equations. The paper focuses on the analysis of selected stability issues, i.e., the preservation of the long-term character of stochastic oscillators over discretized dynamics and the analysis of mean-square and asymptotic stability properties of theta-methods for Volterra integral equations.
引用
收藏
页数:14
相关论文
共 39 条
  • [1] Brunner H, 1986, CWI MONOGRAPHS, V3
  • [2] On the boundedness of asymptotic stability regions for the stochastic theta method
    Bryden, A
    Higham, DJ
    [J]. BIT, 2003, 43 (01): : 1 - 6
  • [3] Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations
    Buckwar, E.
    Horvath-Bokor, R.
    Winkler, R.
    [J]. BIT NUMERICAL MATHEMATICS, 2006, 46 (02) : 261 - 282
  • [4] A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods
    Buckwar, Evelyn
    Sickenberger, Thorsten
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (06) : 1110 - 1127
  • [5] Numerical methods for second-order stochastic differential equations
    Burrage, Kevin
    Lenane, Ian
    Lythe, Grant
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) : 245 - 264
  • [6] Numerical solution of time fractional diffusion systems
    Burrage, Kevin
    Cardone, Angelamaria
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 116 : 82 - 94
  • [7] Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise
    Burrage, Kevin
    Burrage, Pamela M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) : 3920 - 3930
  • [8] ACCURATE STATIONARY DENSITIES WITH PARTITIONED NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Burrage, Kevin
    Lythe, Grant
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1601 - 1618
  • [9] Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
    Burrage, Pamela M.
    Burrage, Kevin
    [J]. NUMERICAL ALGORITHMS, 2014, 65 (03) : 519 - 532
  • [10] Partitioned general linear methods for separable Hamiltonian problems
    Butcher, John C.
    D'Ambrosio, Raffaele
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 117 : 69 - 86