In-Plane Flexible Ring Tire Model Parameter Identification: Optimization Algorithms

被引:21
|
作者
Li, Bin [1 ]
Yang, Xiaobo [2 ]
Yang, James [1 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Oshkosh Corp, Oshkosh, WI USA
来源
SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH | 2018年 / 2卷 / 01期
关键词
Flexible ring tire model; parameter identification; optimization algorithms; vehicle dynamics; cleat tests;
D O I
10.4271/10-02-01-0005
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Parameter identification is an important part of tire model development. The prediction performance of a tire model highly depends on the identified parameter values of the tire model. Different optimization algorithms may yield different tire parameters with different computational accuracy. It is essential to find out which optimization algorithm is most likely to generate a set of parameters with the best prediction performance. In this study, four different MATLAB (R) optimization algorithms, including fminsearchcon, patternsearch, genetic algorithm (GA), and particles warm, are used to identify the parameters of a newly proposed in-plane flexible ring tire model. The reference data used for parameter identification are obtained through a ADAMS FTire (R) virtual cleat test. After parameters are identified based on above four algorithms, their performances are compared in terms of effectiveness, efficiency, reliability, and robustness. Once the best optimization algorithm for the proposed tire model is determined, this optimization algorithm is used to test different types of cost functions to determine which cost function is the best choice for tire model parameter identification. The study in this article provides some important insights for the tire model parameter identification.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [41] Enhanced Whale optimization algorithms for parameter identification of solar photovoltaic cell models: a comparative study
    Yang, Sha
    Xiong, Guojiang
    Fu, Xiaofan
    Mirjalili, Seyedali
    Mohamed, Ali Wagdy
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
    Sangdani, M. H.
    Tavakolpour-Saleh, A. R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (09): : 1797 - 1802
  • [43] Parameter identification of LuGre tire model for the simplified motion dynamics of a quarter-vehicle model based on ant colony algorithm
    Han, Jiapeng
    Sun, Yongli
    Wang, Yanyang
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 3039 - 3043
  • [44] Parameter identification for a water quality model using two hybrid swarm intelligence algorithms
    Chen, Guangzhou
    Wang, Jiaquan
    Li, Ruzhong
    SOFT COMPUTING, 2016, 20 (07) : 2829 - 2839
  • [45] Kinematic model and its parameter identification for cannula flexible needle insertion into soft tissue
    Zhao, Yan-Jiang
    Liu, Ze-Hua
    Zhang, Yong-De
    Liu, Zhi-Qing
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (06)
  • [46] Parameter identification of DEM-FEM coupling model to simulate traction behavior of tire-soil interaction
    Zeng, Haiyang
    Lin, Zhifeng
    Huang, Guohong
    Yang, Xiaoqing
    Li, Yanfeng
    Su, Jiabao
    Xu, Wei
    JOURNAL OF TERRAMECHANICS, 2025, 117
  • [47] Parameter identification for a water quality model using two hybrid swarm intelligence algorithms
    Guangzhou Chen
    Jiaquan Wang
    Ruzhong Li
    Soft Computing, 2016, 20 : 2829 - 2839
  • [48] Frequency domain global optimization algorithm for the aircraft flutter model parameter identification
    Wang, Jianhong
    Wang, Daobo
    Wang, Zhisheng
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3340 - 3344
  • [49] Parameter Identification of PEMFC Model Using Improved Dung Beetle Optimization Algorithm
    Zhang, Jingfeng
    Sun, Yalu
    Dong, Haiying
    He, Xin
    ELECTRONICS, 2025, 14 (01):
  • [50] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +