In-Plane Flexible Ring Tire Model Parameter Identification: Optimization Algorithms

被引:21
|
作者
Li, Bin [1 ]
Yang, Xiaobo [2 ]
Yang, James [1 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Oshkosh Corp, Oshkosh, WI USA
来源
SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH | 2018年 / 2卷 / 01期
关键词
Flexible ring tire model; parameter identification; optimization algorithms; vehicle dynamics; cleat tests;
D O I
10.4271/10-02-01-0005
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Parameter identification is an important part of tire model development. The prediction performance of a tire model highly depends on the identified parameter values of the tire model. Different optimization algorithms may yield different tire parameters with different computational accuracy. It is essential to find out which optimization algorithm is most likely to generate a set of parameters with the best prediction performance. In this study, four different MATLAB (R) optimization algorithms, including fminsearchcon, patternsearch, genetic algorithm (GA), and particles warm, are used to identify the parameters of a newly proposed in-plane flexible ring tire model. The reference data used for parameter identification are obtained through a ADAMS FTire (R) virtual cleat test. After parameters are identified based on above four algorithms, their performances are compared in terms of effectiveness, efficiency, reliability, and robustness. Once the best optimization algorithm for the proposed tire model is determined, this optimization algorithm is used to test different types of cost functions to determine which cost function is the best choice for tire model parameter identification. The study in this article provides some important insights for the tire model parameter identification.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [31] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [32] Fireworks Explosion Optimization Algorithm for Parameter Identification of PV model
    Zhang, Qing
    Liu, Hongda
    Dai, Cheng
    2016 IEEE 8TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC-ECCE ASIA), 2016,
  • [33] Research on parameter identification of friction model for servo systems based on genetic algorithms
    Liu, DP
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 1116 - 1120
  • [34] Parameter identification of gas bubble model in pressure pulsations using genetic algorithms
    Jiang Dan
    Li Song-Jing
    Ban Gang
    ACTA PHYSICA SINICA, 2008, 57 (08) : 5072 - 5080
  • [35] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [36] Parameter identification of BLDC motor model via metaheuristic optimization techniques
    Kumpanya, Danupon
    Thaiparnat, Sattarpoom
    Puangdownreong, Deacha
    INDUSTRIAL ENGINEERING AND SERVICE SCIENCE 2015, IESS 2015, 2015, 4 : 322 - 327
  • [37] Parameter identification of dynamic load model based on chaotic optimization strategy
    Wang, Shuangxin
    Jiang, Yan
    Zhu, Hengjun
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 7552 - 7556
  • [38] Parameter identification of superplastic constitutive model based on global optimization method
    Qu, Jie
    Jin, Quanlin
    Xu, Bingye
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (06): : 80 - 87
  • [39] Application of a chaotic optimization strategy to parameter identification of static load model
    Wang, SX
    Han, F
    Zhu, HJ
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1560 - 1564
  • [40] Parameter identification of magnetorheological damper model with modified seagull optimization algorithm
    Shi W.-K.
    Zhang S.-G.
    Zhang Y.-K.
    Chen Z.-Y.
    Jiang Y.-F.
    Lin B.-B.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (04): : 764 - 772