NEW MINIMUM DISTANCE BOUNDS FOR CERTAIN BINARY LINEAR CODES

被引:2
作者
DASKALOV, RN
KAPRALOV, SN
机构
[1] Department of Mathematics, Technical University
关键词
BINARY LINEAR CODE; MINIMUM DISTANCE BOUND;
D O I
10.1109/18.165453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The nonexistence of binary linear [n, k, d]-codes having the parameters [119, 11, 56], [104, 12, 48], [99, 14, 44], [116, 15, 52], [124, 15, 56], [109, 16, 48], [43, 17, 14], [47, 17, 16], [56, 18, 201, [61, 19, 22], [65, 19, 24], [73, 19, 28], [89, 19, 36], [82, 20, 32], [124, 22, 52], [118, 24, 48], [56, 29, 14], [69, 30, 20], [89, 30, 30], [93, 30, 32], [62, 31, 16], [74, 31, 22], [86, 31, 28], [102, 31, 36], [80, 33, 24], [120, 33, 44], [108,44,32], [117, 45, 36], [105, 49, 28] is proven and as a consequence more than 400 minimum distance upper bounds in Verhoeff's table have been improved.
引用
收藏
页码:1795 / 1796
页数:2
相关论文
共 6 条
[1]   NEW BOUNDS ON BINARY LINEAR CODES OF DIMENSION 8 [J].
DODUNEKOV, SM ;
HELLESETH, T ;
MANEV, N ;
YTREHUS, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) :917-919
[2]  
DODUNEKOV SM, 1991, LITHISYI1283 LINK DE
[3]   THE NONEXISTENCE OF CERTAIN BINARY LINEAR CODES [J].
HILL, R ;
TRAYNOR, KL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :917-922
[4]  
Macwilliams F. J., 1977, THEORY ERROR CORRECT
[5]  
VANTILBORG HCA, 1981, DISCRETE MATH, V33, P197, DOI 10.1016/0012-365X(81)90166-7
[6]  
VERHOEFF T, 1989, UPDATED TABLE MINIMU