ANALYSIS OF QUASI-PERIODIC BIFURCATION FOR A MODEL SYSTEM

被引:0
作者
STEEN, PH [1 ]
DAVIS, SH [1 ]
机构
[1] NORTHWESTERN UNIV,EVANSTON,IL 60201
来源
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY | 1980年 / 25卷 / 09期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1073 / 1073
页数:1
相关论文
共 50 条
  • [41] A low-dimensional model system for quasi-periodic plasma perturbations
    Constantinescu, D.
    Dumbrajs, O.
    Igochine, V.
    Lackner, K.
    Meyer-Spasche, R.
    Zohm, H.
    PHYSICS OF PLASMAS, 2011, 18 (06)
  • [42] SECONDARY BIFURCATION OF QUASI-PERIODIC SOLUTIONS CAN LEAD TO PERIOD MULTIPLICATION
    GROTBERG, JB
    REISS, EL
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (02) : 169 - 174
  • [43] On a saddle-node bifurcation in a problem of quasi-periodic harmonic forcing
    Fabbri, R
    Johnson, R
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 839 - 847
  • [44] PERIODIC AND QUASI-PERIODIC CRYSTALS
    GRATIAS, D
    CAHN, JW
    SCRIPTA METALLURGICA, 1986, 20 (09): : 1193 - 1197
  • [45] Dynamical transitions of the quasi-periodic plasma model
    Kieu, Chanh
    Wang, Quan
    Yan, Dongming
    NONLINEAR DYNAMICS, 2019, 96 (01) : 323 - 338
  • [46] POPULATION-MODEL WITH QUASI-PERIODIC CLUSTERING
    BEBIE, H
    MARCHAND, JP
    PHYSICA A, 1988, 151 (2-3): : 281 - 292
  • [47] Lagrangian stability of a nonlinear quasi-periodic system
    Lin, SS
    Wang, YQ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (01) : 258 - 268
  • [48] Dynamical transitions of the quasi-periodic plasma model
    Chanh Kieu
    Quan Wang
    Dongming Yan
    Nonlinear Dynamics, 2019, 96 : 323 - 338
  • [49] ELECTRONIC-STRUCTURE OF A QUASI-PERIODIC SYSTEM
    LU, JP
    BIRMAN, JL
    PHYSICAL REVIEW B, 1987, 36 (08): : 4471 - 4474
  • [50] MATHEMATICAL-MODEL OF QUASI-PERIODIC OSCILLATORS
    SINITSKY, LA
    FELYSHTYN, OI
    RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (08): : 1598 - 1604