Multipolar robust optimization

被引:7
|
作者
Ben-Ameur, Walid [1 ]
Ouorou, Adam [2 ]
Wang, Guanglei [1 ,2 ]
Zotkiewicz, Mateusz [3 ]
机构
[1] Univ Paris Saclay, CNRS, Telecom SudParis, Samovar, 9 Rue Charles Fourier, F-91011 Evry, France
[2] Orange Labs Res, 38-40 Rue Gen Leclerc, F-92794 Issy Les Moulineaux 9, France
[3] Warsaw Univ Technol, Inst Telecommun, Nowowiejska 15-19, PL-00665 Warsaw, Poland
关键词
Uncertainty; Robust optimization; Multistage optimization; Polyhedral approximation;
D O I
10.1007/s13675-017-0092-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider linear programs involving uncertain parameters and propose a new tractable robust counterpart which contains and generalizes several other models including the existing Affinely Adjustable Robust Counterpart and the Fully Adjustable Robust Counterpart. It consists in selecting a set of poles whose convex hull contains some projection of the uncertainty set, and computing a recourse strategy for each data scenario as a convex combination of some optimized recourses (one for each pole). We show that the proposed multipolar robust counterpart is tractable and its complexity is controllable. Further, we show that under some mild assumptions, two sequences of upper and lower bounds converge to the optimal value of the fully adjustable robust counterpart. We numerically investigate a couple of applications in the literature demonstrating that the approach can effectively improve the affinely adjustable policy.
引用
收藏
页码:395 / 434
页数:40
相关论文
共 50 条
  • [1] Robust CARA Optimization
    Chen, Li
    Sim, Melvyn
    OPERATIONS RESEARCH, 2024,
  • [2] Multistage robust discrete optimization via quantified integer programming
    Goerigk, Marc
    Hartisch, Michael
    COMPUTERS & OPERATIONS RESEARCH, 2021, 135
  • [3] A brief survey of robust optimization
    Di Barba, Paolo
    Formisano, Alessandro
    Martone, Raffaele
    Repetto, Maurizio
    Salvini, Alessandro
    Savini, Antonio
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2018, 56 : S61 - S72
  • [4] Robust optimization with belief functions
    Goerigk, Marc
    Guillaume, Romain
    Kasperski, Adam
    Zielinski, Pawel
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 159
  • [5] Robust optimization of hydrogen network
    Lou, Junyi
    Liao, Zuwei
    Jiang, Binbo
    Wang, Jingdai
    Yang, Yongrong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (03) : 1210 - 1219
  • [6] Theory and Applications of Robust Optimization
    Bertsimas, Dimitris
    Brown, David B.
    Caramanis, Constantine
    SIAM REVIEW, 2011, 53 (03) : 464 - 501
  • [7] A survey of adjustable robust optimization
    Yanikoglu, Ihsan
    Gorissen, Bram L.
    den Hertog, Dick
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (03) : 799 - 813
  • [8] PROBABILISTIC GUARANTEES IN ROBUST OPTIMIZATION
    Bertsimas, Dimitris
    den Hertog, Dick
    Pauphilet, Jean
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2893 - 2920
  • [9] Robust optimization approximation for joint chance constrained optimization problem
    Yuan, Yuan
    Li, Zukui
    Huang, Biao
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (04) : 805 - 827
  • [10] Robust optimization for routing problems on trees
    Buettner, Sabine
    Krumke, Sven O.
    TOP, 2016, 24 (02) : 338 - 359