EXISTENCE OF AN OPTIMAL MARKOVIAN FILTER FOR THE CONTROL UNDER PARTIAL OBSERVATIONS

被引:42
作者
ELKAROUI, N
NGUYEN, DH
JEANBLANCPICQUE, M
机构
[1] UNIV PARIS 11, F-91405 ORSAY, FRANCE
[2] ECOLE NORMALE SUPER CACHAN, DEPT MATH, BUREAU H 43, F-94230 CACHAN, FRANCE
关键词
Mathematical Techniques--Differential Equations - Signal Filtering and Prediction;
D O I
10.1137/0326057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the control of diffusions under partial observations. Part I studies the control of the signal process dXt=b(t,Xt,Ut)dt+σ(t,Xt,Ut)dBt. The existence of an optimal relaxed control is proved. Part II studies the separated problem and proves the existence of an optimal Markovian filter. Then, the authors compare the two problems and prove, under mild conditions, that the value functions for the two problems are equal.
引用
收藏
页码:1025 / 1061
页数:37
相关论文
共 59 条
[41]   WHITE NOISE CALCULUS AND NONLINEAR FILTERING THEORY [J].
KALLIANPUR, G ;
KARANDIKAR, RL .
ANNALS OF PROBABILITY, 1985, 13 (04) :1033-1107
[42]  
Krylov N.V., 1980, CONTROLLED DIFFUSION
[43]  
KUNITA H, 1971, J MULTIVARIATE ANAL, V1, P365, DOI 10.1016/0047-259X(71)90015-7
[44]  
KUNITA H, STOCHASTIC DIFFERENT
[45]  
KURTZ TG, 1984, LECTURE NOTES CONTRO, V69, P224
[46]  
NISIO M, 1978, APPL MATH OPT, V4, P143
[47]  
Pardoux E., 1979, Stochastics, V3, P127, DOI 10.1080/17442507908833142
[48]  
PARDOUX E, 1983, LECTURE NOTES MATH, V972
[49]  
Pardoux E, 1982, STOCHASTICS INT J PR, V6, P193, DOI DOI 10.1080/17442508208833204
[50]  
Roelly-Coppoletta S., 1986, STOCH STOCH REP, V17, P43