ON THE IRREGULARITY STRENGTH OF THE M X N GRID

被引:53
作者
DINITZ, JH
GARNICK, DK
GYARFAS, A
机构
[1] BOWDOIN COLL,DEPT COMP SCI,BRUNSWICK,ME 04011
[2] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1361 BUDAPEST 5,HUNGARY
关键词
D O I
10.1002/jgt.3190160409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G with weighting w: E(G) --> Z+, the strength of G(w) is the maximum weight on any edge. The sum of a vertex in G(w) is the sum of the weights of all its incident edges. The network G(w) is irregular if the vertex sums are distinct. The irregularity strength of G is the minimum strength of the graph under all irregular weightings. In this paper we determine the irregularity strength of the m x n grid for certain m and n. In particular, for every positive integer d we find the irregularity strength for all but a finite number of m x n grids where n - m = d. In addition, we present a general lower bound for the irregularity strength of graphs.
引用
收藏
页码:355 / 374
页数:20
相关论文
共 12 条
[1]  
CAMMACK LA, IRREGULARITY STRENGT
[2]  
Chartrand G., 1988, C NUMER, V64, P197
[3]  
DINITZ JH, 1991, 918 U VERM DEP MATH
[4]  
Ebert G., 1990, C NUMERANTIUM, V71, P39
[5]   IRREGULAR NETWORKS, REGULAR GRAPHS AND INTEGER MATRICES WITH DISTINCT ROW AND COLUMN SUMS [J].
FAUDREE, RJ ;
SCHELP, RH ;
JACOBSON, MS ;
LEHEL, J .
DISCRETE MATHEMATICS, 1989, 76 (03) :223-240
[6]   IRREGULARITY STRENGTH OF DENSE GRAPHS [J].
FAUDREE, RJ ;
JACOBSON, MS ;
KINCH, L ;
LEHEL, J .
DISCRETE MATHEMATICS, 1991, 91 (01) :45-59
[7]  
GARNICK DK, 1990, J COMBINAT MATH COMB, V8, P195
[8]   THE IRREGULARITY STRENGTH OF KM,M IS 4 FOR ODD-M [J].
GYARFAS, A .
DISCRETE MATHEMATICS, 1988, 71 (03) :273-274
[9]  
GYARFAS A, 1989, UTILITAS MATHEMATICA, V35, P111
[10]  
JACOBSON MS, BOUND STRENGTH IRREG