Realistic modeling of neurons and networks: towards brain simulation

被引:48
作者
D'Angelo, Egidio [1 ,2 ]
Solinas, Sergio [2 ]
Garrido, Jesus [1 ,3 ]
Casellato, Claudia [4 ]
Pedrocchi, Alessandra [4 ]
Mapelli, Jonathan [2 ,5 ]
Gandolfi, Daniela [1 ,2 ,5 ]
Prestori, Francesca [1 ,2 ]
机构
[1] Univ Pavia, Dept Brain & Behav Sci, Pavia, Italy
[2] C Mondino Natl Neurol Inst, Brain Connect Ctr, Pavia, Italy
[3] Natl Interuniv Consortium Phys Sci Matter, CNISM, Pavia, Italy
[4] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[5] Univ Modena & Reggio Emilia, Dept Biomed Metab & Neural Sci, Modena, Italy
关键词
neuron models; computation; plasticity;
D O I
10.11138/FNeur/2013.28.3.153
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 83 条
[1]  
Abbott A, 2013, NATURE, DOI [10.1038/nature.2013.12291, DOI 10.1038/NATURE.2013.12291]
[2]  
ALBUS J S, 1971, Mathematical Biosciences, V10, P25, DOI 10.1016/0025-5564(71)90051-4
[3]   Nanotools for Neuroscience and Brain Activity Mapping [J].
Alivisatos, A. Paul ;
Andrews, Anne M. ;
Boyden, Edward S. ;
Chun, Miyoung ;
Church, George M. ;
Deisseroth, Karl ;
Donoghue, John P. ;
Fraser, Scott E. ;
Lippincott-Schwartz, Jennifer ;
Looger, Loren L. ;
Masmanidis, Sotiris ;
McEuen, Paul L. ;
Nurmikko, Arto V. ;
Park, Hongkun ;
Peterka, Darcy S. ;
Reid, Clay ;
Roukes, Michael L. ;
Scherer, Axel ;
Schnitzer, Mark ;
Sejnowski, Terrence J. ;
Shepard, Kenneth L. ;
Tsao, Doris ;
Turrigiano, Gina ;
Weiss, Paul S. ;
Xu, Chris ;
Yuste, Rafael ;
Zhuang, Xiaowei .
ACS NANO, 2013, 7 (03) :1850-1866
[4]   The Brain Activity Map [J].
Alivisatos, A. Paul ;
Chun, Miyoung ;
Church, George M. ;
Deisseroth, Karl ;
Donoghue, John P. ;
Greenspan, Ralph J. ;
McEuen, Paul L. ;
Roukes, Michael L. ;
Sejnowski, Terrence J. ;
Weiss, Paul S. ;
Yuste, Rafael .
SCIENCE, 2013, 339 (6125) :1284-1285
[5]  
Arbib M.A., 1997, NEURAL ORG STRUCTURE
[6]   How Synaptic Release Probability Shapes Neuronal Transmission: Information-Theoretic Analysis in a Cerebellar Granule Cell [J].
Arleo, Angelo ;
Nieus, Thierry ;
Bezzi, Michele ;
D'Errico, Anna ;
D'Angelo, Egidio ;
Coenen, Olivier J-M. D. .
NEURAL COMPUTATION, 2010, 22 (08) :2031-2058
[7]   Cerebellum-like structures and their implications for cerebellar function [J].
Bell, Curtis C. ;
Han, Victor ;
Sawtell, Nathaniel B. .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :1-24
[8]  
Blakemore SJ, 1998, J NEUROSCI, V18, P7511
[9]   The organization of cerebellar cortical circuitry revisited - Implications for function [J].
Bower, JM .
CREBELLUM: RECENT DEVELOPMENTS IN CEREBELLAR RESEARCH, 2002, 978 :135-155
[10]  
Bower JM, 1997, PROG BRAIN RES, V114, P463