A Different Approach to Normalized Analytic Functions Through Meromorphic Functions Defined by Extended Multiplier Transformations Operator

被引:0
作者
Darus, Maslina [1 ]
Faisal, Imran [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor D Ehsa, Malaysia
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2011年 / 23卷 / D11期
关键词
analytic functions; normalize analytic functions; meromorphic functions; differential subordination; differential Superordination;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(n) denote the class of analytic functions f, in the open unit disk U = {z : |z| < 1} normalized by f(0) = f'(0)-1 = 0, and let Sigma(p,k) denote the class of Meromorphic functions in U. = U\{0} . In this paper, we introduce and study the classes of functions z(p+1) f(z). A, such that f(z). Sigma(p,k) . We also introduce and study the class V (lambda,k) (alpha,beta)( n, mu, delta,xi,epsilon) of functions f(z)is an element of Sigma(p,k) satisfying |D-lambda(n+1) (alpha,beta,mu)z(p+1) f(z)/z (z/D-lambda(n+1) (alpha,beta,mu)z(p+1) f(z))(delta) -1/xi| <1-epsilon Where delta > 0, lambda >0, xi is an element of(0,1], epsilon is an element of[0,1) and D lambda n(alpha,beta,mu)f(z): A -> A, is the Extended Multiplier Transformations Operator, newly defined as follows D-lambda(n)(alpha,beta,mu) f (z) -z +Sigma(infinity)(k=2) (alpha+(mu+lambda) (k-1) + beta/alpha+beta)n alpha(k)z(k) Several inclusion, subordination, and superordination properties have been discussed for the above said classes of normalized analytic and meromorphic functions.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 14 条
[1]  
Al-Oboudi F. M., 2004, INT J MATH MATH SCI, V2004, P1429
[2]  
Alb Lupas A, 2009, MATEMATICA, V2, P131
[3]  
Aouf M. K., 2009, P PAKISTAN ACAD SCI, V46, P217
[4]  
Catas A., 2010, ACTA U APULENSIS, V22, P35
[5]  
Catas A., 2009, INT J OPEN PROBLEM C, V1, P14
[6]   Argument estimates of certain analytic functions defined by a class of multiplier transformations [J].
Cho, NE ;
Srivastava, HM .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (1-2) :39-49
[7]  
Frasin B. A., 2001, INT J MATH MATH SCI, V25, P305
[8]  
FRASIN BA, 2008, ANALELE U ORADEA, V15, P61
[9]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[10]  
Miller S. S., 2000, SERIES MONOGRAPHS TE