A NEW FINITE-ELEMENT OF C-1 CUBIC-SPLINES

被引:2
作者
GAO, JB [1 ]
机构
[1] DALIAN UNIV TECHNOL,INST MATH SCI,DALIAN 116024,PEOPLES R CHINA
关键词
BIVARIATE SPLINE; FINITE ELEMENT; BEZIER NET; INTERPOLATION; MACROTRIANGULATION;
D O I
10.1016/0377-0427(92)90186-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a new finite element with dimension 16 of C1 cubic splines which have interpolation schemes on the Morgan-Scott construction DELTA-0 of a triangle.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 8 条
[1]   THE DIMENSION OF BIVARIATE SPLINE SPACES OF SMOOTHNESS R FOR DEGREE D GREATER-THAN-OR-EQUAL-TO 4R+1 [J].
ALFELD, P ;
SCHUMAKER, LL .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) :189-197
[2]  
FARIN G, 1979, THESIS U BRAUNSCHWEI
[3]  
Heindl G., 1979, MULTIVARIATE APPROXI, P146, DOI [10.1007/978-3-0348-6289-9_11, DOI 10.1007/978-3-0348-6289-9_11]
[4]  
Lawson CL, 1977, MATH SOFTWARE, P161, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X, 10.1016/B978-0-12-587260-7.50011-X]
[5]  
MORGAN J, 1975, UNPUB DIMENSION SPAC
[6]  
Powell M. J. D., 1977, ACM Transactions on Mathematical Software, V3, P316, DOI 10.1145/355759.355761
[7]   TRIANGULATION AND INTERPOLATION AT ARBITRARILY DISTRIBUTED POINTS IN THE PLANE [J].
RENKA, RJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (04) :440-442
[8]  
Shi X, 1986, 86004 JIL U DEP MATH