Modified Variational Iteration Method for Sine-Gordon Equation

被引:1
作者
Saeed, Umer [1 ]
机构
[1] Natl Univ Sci & Technol, NUST Inst Civil Engn, Islamabad, Pakistan
来源
TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS | 2016年 / 5卷 / 03期
关键词
Variational iteration method; Chebyshev polynomial; Sine-Gordon equation;
D O I
10.18421/TEM53-09
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a modified variational iteration method for solving nonlinear differential equations. The main advantage of this modification is that it gives stable and relatively accurate results while increasing the domain of unknown function in differential equation, where variational iteration method becomes unstable. The proposed method is based on Chebyshev polynomial approximations in the correction functional of variational iteration method. To show the advantages of the proposed method, we use the sine-Gordon equation as a test problem.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 23 条
[1]  
A A Hemeda, 2009, APPL MATH COMPUT, V208, P434, DOI [10.1016/j.amc.2008.11.031, DOI 10.1016/J.AMC.2008.11.031]
[2]  
Barone A., 1971, RIV NUOVO CIMENTO, V1, P227, DOI DOI 10.1007/BF02820622
[3]   Numerical solution of sine-Gordon equation by variational iteration method [J].
Batiha, B. ;
Noorani, M. S. M. ;
Hashim, I. .
PHYSICS LETTERS A, 2007, 370 (5-6) :437-440
[4]  
Batiha B., 2012, INT J APPL MATH RES, V1, P8, DOI [10.14419/ijamr.v1i1.2, DOI 10.14419/IJAMR.V1I1.2]
[5]   Exact and numerical solutions for non-linear Burger's equation by VIM [J].
Biazar, J. ;
Aminikhah, H. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (7-8) :1394-1400
[6]  
Cveticanin L., 2012, CHAOS SOLITON FRACT, V6, P4787
[7]  
Din S. T. M., 2009, WORLD APPL SCI J, V6, P999
[8]   Nonlinear Klein-Gordon and Schrodinger Equations by the Projected Differential Transform Method [J].
Do, Younghae ;
Jang, Bongsoo .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[9]  
Elzaki, 2012, INT MATH FORUM, V7, P631
[10]  
He J, 1997, COMMUNICATIONS NONLI, V2, P437