Differential equation approximations for Markov chains

被引:145
作者
Darling, R. W. R. [1 ]
Norris, J. R. [2 ]
机构
[1] Natl Secur Agcy, Math Res Grp, 9800 Savage Rd, Ft George G Meade, MD 20755 USA
[2] Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge CB3 0WB, England
来源
PROBABILITY SURVEYS | 2008年 / 5卷
关键词
D O I
10.1214/07-PS121
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We formulate some simple conditions under which a Markov chain may be approximated by the solution to a differential equation, with quantifiable error probabilities. The role of a choice of coordinate functions for the Markov chain is emphasised. The general theory is illustrated in three examples: the classical stochastic epidemic, a population process model with fast and slow variables, and core-finding algorithms for large random hypergraphs.
引用
收藏
页码:37 / 79
页数:43
相关论文
共 21 条
[1]   Lower bounds for random 3-SAT via differential equations [J].
Achlioptas, D .
THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) :159-185
[2]   Asymptotic analysis of multiscale approximations to reaction networks [J].
Ball, Karen ;
Kurtz, Thomas G. ;
Popovic, Lea ;
Rempala, Greg .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (04) :1925-1961
[3]  
Daley D., 1999, CAMBRIDGE STUDIES MA, V15
[4]  
Darling R. W. R., 2008, CORES CYCLES RANDOM
[5]  
Ethier S.N., 1986, WILEY SERIES PROBABI, DOI DOI 10.1002/9780470316658
[6]  
Hajek B., 1988, Proceedings of the 27th IEEE Conference on Decision and Control (IEEE Cat. No.88CH2531-2), P1455, DOI 10.1109/CDC.1988.194566
[7]  
JACOD J, 2003, GRUNDLEHREN MATH WIS, DOI DOI 10.1007/978-3-662-05265-5
[8]  
KALLENBERG O., 2002, FDN MODERN PROBABILI, V2nd, DOI 10.1007/978-1-4757-4015-8
[9]  
Karp R. M., 1981, 22nd Annual Symposium on Foundations of Computer Science, P364, DOI 10.1109/SFCS.1981.21
[10]  
KURTZ TG, 1981, CBMS NSF REGIONAL C, V0036