ACCURATE ROUNDING SCHEME FOR THE NEWTON-RAPHSON METHOD USING REDUNDANT BINARY REPRESENTATION

被引:20
作者
KABUO, H
TANIGUCHI, T
MIYOSHI, A
YAMASHITA, H
URANO, M
EDAMATSU, H
KUNINOBU, S
机构
[1] Semiconductor Research Center, Matsushita Electric Industrial Co., Ltd., Osaka
关键词
COMPENSATION ALGORITHM; DIVISION; ERROR ANALYSIS; FLOATING POINT; IEEE-754; MULTIPLIER; NEWTON-RAPHSON METHOD; REDUNDANT BINARY; ROUNDING; SQUARE ROOT;
D O I
10.1109/12.250608
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new algorithm of estimation and compensation of the error effect for rounding in the case of implementation of division and square root using the Newton-Raphson method. First, we analyze the error of the hardware system to confirm the condition of the implementation with respect to this algorithm. Next, we describe in detail how to compensate the error by using this algorithm. Finally, we show that the hardware components for this algorithm, the direct rounding mechanism in the recode circuit and the sticky digit generating circuit, can be realized simply by improving the redundant binary representation multiplier. The number of increasing cycles for this new algorithm is only one, and the rounding result using this algorithm satisfies IEEE Standard 754 rounding perfectly.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 8 条
[1]  
DARLEY HM, 1989, Patent No. 4878190
[2]  
EDAMATSU H, 1988, ISSCC DIG TECH PAPER, P152
[3]  
FLOWLER DL, 1989, 9TH P ISCA, P60
[4]  
HWANG K, 1979, COMPUTER ARITHMETIC
[5]   A FLOATING-POINT VLSI CHIP FOR THE TRON ARCHITECTURE - AN ARCHITECTURE FOR RELIABLE NUMERICAL PROGRAMMING [J].
KAWASAKI, S ;
WATABE, M ;
MORINAGA, S .
IEEE MICRO, 1989, 9 (03) :26-44
[6]  
KUNINOBU S, 1987, 8TH P S COMP AR, P80
[7]   A HIGHLY INTEGRATED 40-MIPS (PEAK) 64-B RISC MICROPROCESSOR [J].
MIYAKE, J ;
MAEDA, T ;
NISHIMICHI, Y ;
KATSURA, J ;
TANIGUCHI, T ;
YAMAGUCHI, S ;
EDAMATSU, H ;
WATARI, S ;
TAKAGI, Y ;
TSUJI, K ;
KUNINOBU, S ;
COX, S ;
DUSCHATKO, D ;
MACGREGOR, D .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1990, 25 (05) :1199-1206
[8]  
1988, IEEE STANDARD BINARY