SUPERCONVERGENCE AND REDUCED INTEGRATION IN FINITE-ELEMENT METHOD

被引:145
作者
ZLAMAL, M
机构
关键词
D O I
10.2307/2006479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:663 / 685
页数:23
相关论文
共 50 条
[41]   SUPERCONVERGENCE OF THE GRADIENT IN PIECEWISE LINEAR FINITE-ELEMENT APPROXIMATION TO A PARABOLIC PROBLEM [J].
THOMEE, V ;
XU, JC ;
ZHANG, NY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :553-573
[42]   NODAL SUPERCONVERGENCE AND SOLUTION ENHANCEMENT FOR A CLASS OF FINITE-ELEMENT AND FINITE-DIFFERENCE METHODS [J].
MACKINNON, RJ ;
CAREY, GF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (02) :343-353
[43]   CONVERGENCE OF FINITE-ELEMENT METHOD WITH NUMERICAL-INTEGRATION FOR SHELL PROBLEMS [J].
BERNADOU, M .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (22) :1465-1468
[44]   A DIRECT INTEGRATION METHOD OF ELASTODYNAMICS USING FINITE-ELEMENT TIME DISCRETIZATION [J].
LEE, DI ;
KWAK, BM .
COMPUTERS & STRUCTURES, 1993, 47 (02) :201-211
[46]   Superconvergence of nonconforming finite element method for the Stokes equations [J].
Ye, X .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (02) :143-154
[47]   Superconvergence of finite volume element method for elliptic problems [J].
Zhang, Tie .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) :399-413
[48]   Superconvergence of finite volume element method for elliptic problems [J].
Tie Zhang .
Advances in Computational Mathematics, 2014, 40 :399-413
[49]   ARAKAWAS METHOD IS A FINITE-ELEMENT METHOD [J].
JESPERSE.DC .
JOURNAL OF COMPARATIVE PHYSIOLOGY, 1974, 16 (04) :383-390
[50]   MINIMAX FINITE-ELEMENT METHOD [J].
PARK, IB ;
PILKEY, WD .
JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1982, 108 (05) :998-1011