A NEW APPROACH TO THE PROBLEM OF SCATTERING OF WATER-WAVES BY VERTICAL BARRIERS

被引:4
作者
CHAKRABARTI, A
VIJAYABHARATHI, L
机构
[1] Indian Institute of Science, Department of Applied Mathematics, Bangalore
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1992年 / 72卷 / 09期
关键词
D O I
10.1002/zamm.19920720905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the "jump" and "sum" of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   SOLUTION OF 2 SINGULAR INTEGRAL-EQUATIONS ARISING IN WATER-WAVE PROBLEMS [J].
CHAKRABARTI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (12) :457-459
[3]   A NOTE ON THE PROBLEM OF SCATTERING OF SURFACE-WAVES BY A SUBMERGED FIXED VERTICAL BARRIER [J].
GOSWAMI, SK .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (11) :637-639
[4]  
MANDAL BN, 1987, P INDIAN NATL SCI A, V53, P514
[5]  
Mikhlin S.G., 1964, INTEGRAL EQUATIONS
[6]  
PORTER D, 1972, PROC CAMB PHILOS S-M, V71, P411
[7]  
Sneddon I. N., 1974, USE INTEGRAL TRANSFO
[8]  
Stoker J.J., 2011, WATER WAVES MATH THE, V36, DOI DOI 10.1002/9781118033159
[9]   MULTIPOLE EXPANSIONS IN THE THEORY OF SURFACE WAVES [J].
THORNE, RC .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04) :707-716
[10]  
URSELL F, 1945, P CAMBRIDGE PHILOS S, V41, P374