SLEPIAN-WOLF-COVER THEOREM FOR NETWORKS OF CHANNELS

被引:46
作者
HAN, TS
机构
来源
INFORMATION AND CONTROL | 1980年 / 47卷 / 01期
关键词
D O I
10.1016/S0019-9958(80)90284-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:67 / 83
页数:17
相关论文
共 14 条
[1]  
AMARI S, 1963, RAAG75 RES NOT
[2]   PROOF OF DATA COMPRESSION THEOREM OF SLEPIAN AND WOLF FOR ERGODIC SOURCES [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (02) :226-228
[4]   A NOTE ON THE MAXIMUM FLOW THROUGH A NETWORK [J].
ELIAS, P ;
FEINSTEIN, A ;
SHANNON, CE .
IRE TRANSACTIONS ON INFORMATION THEORY, 1956, 2 (04) :117-119
[5]  
FANO FM, 1961, TRANSMISSION INFORMA
[6]  
Ford Lester R., 1962, FLOWS NETWORKS
[7]   ALGORITHMS FOR SOLVING INDEPENDENT-FLOW PROBLEMS [J].
FUJISHIGE, S .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1978, 21 (02) :189-204
[8]  
GALLAGER RG, 1968, INFORMATION THEORY R
[9]  
HAN TS, 1979, IEEE T INFORM THEORY, V25, P360, DOI 10.1109/TIT.1979.1056041
[10]   CAPACITY REGION OF GENERAL MULTIPLE-ACCESS CHANNEL WITH CERTAIN CORRELATED SOURCES [J].
HAN, TS .
INFORMATION AND CONTROL, 1979, 40 (01) :37-60