External Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal-SOI Waveguide Optomechanical System

被引:0
作者
Tsvirkun, Viktor [1 ,3 ]
Surrente, Alessandro [1 ]
Raineri, Fabrice [1 ,2 ]
Beaudoin, Gregoire [1 ]
Raj, Rama [1 ]
Sagnes, Isabelle [1 ]
Robert-Philip, Isabelle [1 ]
Braive, Remy [1 ,2 ]
机构
[1] CNRS, UPR 20, LPN, Route Nozay, F-91460 Marcoussis, France
[2] Univ Paris Diderot, F-75205 Paris 13, France
[3] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, F-13013 Marseille, France
关键词
optomechanics; cavity optomechanics; photonic crystals; quantum dots;
D O I
10.3390/photonics3040052
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cavity optomechanical systems with an enhanced coupling between mechanical motion and electromagnetic radiation have permitted the investigation of many novel physical effects. The optomechanical coupling in the majority of these systems is of dispersive nature: the cavity resonance frequency is modulated by the vibrations of the mechanical oscillator. Dissipative optomechanical interaction, where the photon lifetime in the cavity is modulated by the mechanical motion, has recently attracted considerable interest and opens new avenues in optomechanical control and sensing. In this work we demonstrate an external optical control over the dissipative optomechanical coupling strength mediated by the modulation of the absorption of a quantum dot layer in a hybrid optomechanical system. Such control enhances the capability of tailoring the optomechanical coupling of our platform, which can be used in complement to the previously demonstrated control of the relative (dispersive to dissipative) coupling strength via the geometry of the integrated access waveguide.
引用
收藏
页数:8
相关论文
共 19 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]  
Aspelmeyer M, 2014, QUANT SCI TECH, P1, DOI 10.1007/978-3-642-55312-7
[3]   Nanotorsional resonator torque magnetometry [J].
Davis, J. P. ;
Vick, D. ;
Fortin, D. C. ;
Burgess, J. A. J. ;
Hiebert, W. K. ;
Freeman, M. R. .
APPLIED PHYSICS LETTERS, 2010, 96 (07)
[4]   Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics [J].
Elste, Florian ;
Girvin, S. M. ;
Clerk, A. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[5]   Cavity Optomechanical Magnetometer [J].
Forstner, S. ;
Prams, S. ;
Knittel, J. ;
van Ooijen, E. D. ;
Swaim, J. D. ;
Harris, G. I. ;
Szorkovszky, A. ;
Bowen, W. P. ;
Rubinsztein-Dunlop, H. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[6]   Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity [J].
Gavartin, E. ;
Braive, R. ;
Sagnes, I. ;
Arcizet, O. ;
Beveratos, A. ;
Kippenberg, T. J. ;
Robert-Philip, I. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[7]   Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature [J].
Hostein, R. ;
Braive, R. ;
Le Gratiet, L. ;
Talneau, A. ;
Beaudoin, G. ;
Robert-Philip, I. ;
Sagnes, I. ;
Beveratos, A. .
OPTICS LETTERS, 2010, 35 (08) :1154-1156
[8]   Tuning of nanocavity optomechanical coupling using a near-field fiber probe [J].
Hryciw, Aaron C. ;
Wu, Marcelo ;
Khanaliloo, Behzad ;
Barclay, Paul E. .
OPTICA, 2015, 2 (05) :491-496
[9]   Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides [J].
Karle, T. J. ;
Halioua, Y. ;
Raineri, F. ;
Monnier, P. ;
Braive, R. ;
Le Gratiet, L. ;
Beaudoin, G. ;
Sagnes, I. ;
Roelkens, G. ;
van Laere, F. ;
Van Thourhout, D. ;
Raj, R. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (06)
[10]   Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides [J].
Li, Mo ;
Pernice, Wolfram H. P. ;
Tang, Hong X. .
PHYSICAL REVIEW LETTERS, 2009, 103 (22)