A HIGH-ACCURACY VERSION OF GODUNOVS IMPLICIT SCHEME FOR INTEGRATING THE NAVIER-STOKES EQUATIONS

被引:4
作者
IVANOV, MY
KRUPA, VG
NIGMATULLIN, RZ
机构
来源
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS | 1989年 / 29卷 / 03期
关键词
D O I
10.1016/0041-5553(89)90164-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The system of Navier-Stokes equations, written in divergent form for an arbitrary curvilinear system of coordinates, is integrated using a high-accuracy version of Godunov's monotone implicit difference scheme. Underlying the scheme is a procedure for the resolution of arbitrary discontinuities and piecewise-parabolic distribution of parameters over the grid cells, satisfying certain monotonicity conditions.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 21 条
[1]   IMPLICIT FACTORED SCHEME FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BEAM, RM ;
WARMING, RF .
AIAA JOURNAL, 1978, 16 (04) :393-402
[2]  
BRILEY WR, 1977, J COMPUT PHYS, V24, P372, DOI 10.1016/0021-9991(77)90029-8
[3]  
CHAKRAVARTHY SR, 1985, AIAA363 PAP
[4]   IMPLICIT UPWIND METHODS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
COAKLEY, TJ .
AIAA JOURNAL, 1985, 23 (03) :374-380
[5]  
Godunov S., 1961, ZH VYCH MAT MAT FIZ, V1, P1020
[6]  
Godunov S.K., 1959, MAT SBORNIK, V89, P271
[7]  
Godunov S. K., 1976, NUMERICAL SOLUTION M
[8]  
HAASE W, 1983, FLUID MECH, V7, P99
[9]  
HAKKINEN RJ, 1959, NASA21859W MEM
[10]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393