WEIGHTS FOR THE ERGODIC MAXIMAL OPERATOR AND AE CONVERGENCE OF THE ERGODIC AVERAGES FOR FUNCTIONS IN LORENTZ SPACES

被引:0
作者
SALVADOR, PO
机构
关键词
ERGODIC AVERAGES; ERGODIC MAXIMAL OPERATOR; LORENTZ SPACES; MEASURE PRESERVING TRANSFORMATIONS; NULL-PRESERVING TRANSFORMATIONS; WEIGHTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with an invertible null-preserving transformation into itself of a finite measure space. We prove that the uniform boundedness of the ergodic averages in a reflexive Lorentz space implies a.e. convergence. In order to do this, we study the ''good weights'' for the maximal operator associated to an invertible measure preserving transformation.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 6 条
[1]   THE HARDY-LITTLEWOOD MAXIMAL-FUNCTION ON L(P,Q) SPACES WITH WEIGHTS [J].
CHUNG, HM ;
HUNT, RA ;
KURTZ, DS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :109-120
[4]  
HUNT RA, 1966, ENSEIGN MATH, V12
[5]  
Krengel U., 1985, ERGODIC THEOREMS