UNIFORM BOUNDS FOR BESSEL FUNCTIONS

被引:49
作者
Krasikov, I. [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
Bessel function; bounds;
D O I
10.1515/JAA.2006.83
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For v > -1/2 and x real we shall establish explicit bounds for the Bessel function J(v)(x) which are uniform in x and v. This work and the recent result of L. J. Landau [7] provide relatively sharp inequalities for all real x.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 12 条
[1]   ON A CLASS OF NONLINEAR DIFFERENTIAL-OPERATORS ACTING ON POLYNOMIALS [J].
DILCHER, K ;
STOLARSKY, KB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 170 (02) :382-400
[2]  
Foster W.H., 2000, INT J MATH ALGORITHM, V2, P121
[3]  
Foster W. H., 2000, LMS J COMPUT MATH, V3, P307
[4]   Research on the theory of equations. [J].
Jensen, JLWV .
ACTA MATHEMATICA, 1913, 36 (01) :181-195
[5]   Nonnegative quadratic forms and bounds on orthogonal polynomials [J].
Krasikov, I .
JOURNAL OF APPROXIMATION THEORY, 2001, 111 (01) :31-49
[6]   Bessel functions: Monotonicity and bounds [J].
Landau, LJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :197-215
[7]   ''Best possible'' upper bounds for the first two positive zeros of the Bessel function J(v)(x): The infinite case [J].
Lang, T ;
Wong, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) :311-329
[8]   ''Best possible'' upper bounds for the first positive zeros of Bessel functions - The finite part [J].
Lorch, L ;
Uberti, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 75 (02) :249-258
[9]   GENERALIZED JACOBI WEIGHTS, CHRISTOFFEL FUNCTIONS, AND JACOBI-POLYNOMIALS [J].
NEVAI, P ;
ERDELYI, T ;
MAGNUS, AP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) :602-614
[10]   EXTENSIONS OF INEQUALITIES OF LAGUERRE AND TURAN TYPE [J].
PATRICK, ML .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (02) :675-682