APPLICATION OF QUANTUM STOCHASTIC CALCULUS TO OPTIMAL-CONTROL

被引:4
作者
BOUKAS, A [1 ]
机构
[1] AMER COLL GREECE,DEPT MATH,GR-15342 ATHENS,GREECE
关键词
D O I
10.1007/BF01208543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a ''plant'' whose output is described by a Hudson-Parthasarathy quantum stochastic differential equation [1-3] driven by standard quantum Brownian motion, we compute explicitly the control process that rapidly makes the size of the plant's output small, and keeps the energy used at a minimum. The solution to the quantum stochastic analogue of the linear regulator problem of classical stochastic control theory ([4], [5]) follows as a special case.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 11 条
[1]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[2]  
BARCHIELLI A, 1991, QUANTUM PROBABILITY, V6
[3]  
Belavkin V., 1989, LECT NOTES CONTROL I, V121, P245
[4]  
Belavkin V.P., 1988, PROC 24 KARPACZ WINT
[5]  
Curtain R. F., 1977, FUNCTIONAL ANAL MODE
[6]   INFINITE-DIMENSIONAL RICCATI EQUATION [J].
CURTAIN, RF ;
PRITCHARD, AJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (01) :43-57
[7]   ON QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS WITH UNBOUNDED COEFFICIENTS [J].
FAGNOLA, F .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 86 (04) :501-516
[8]   QUANTUM ITOS FORMULA AND STOCHASTIC EVOLUTIONS [J].
HUDSON, RL ;
PARTHASARATHY, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (03) :301-323
[9]  
Parthasarathy K. R., 1992, MODERN BIRKHAUSER CL
[10]  
PARTHASARATHY KR, 1986, SPRINGER LECT NOTES, V1203, P177