MULTIVARIATE DATA-ANALYSIS APPLIED TO LOW-DENSITY POLYETHYLENE REACTORS

被引:94
作者
SKAGERBERG, B
MACGREGOR, JF
KIPARISSIDES, C
机构
[1] MCMASTER UNIV, DEPT CHEM ENGN, HAMILTON L8S 4L7, ONTARIO, CANADA
[2] ARISTOTELIAN UNIV SALONIKA, DEPT CHEM ENGN, Thessaloniki, GREECE
关键词
D O I
10.1016/0169-7439(92)80117-M
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss how partial least squares regression (PLS) can be applied to the analysis of complex process data. PLS models are here used to: (i) accomplish a better understanding of the underlying relations of the process; (ii) monitor the performance of the process by means of multivariate control charts; and (iii) build predictive models for inferential control. The strategies for applying PLS to process data are described in detail and illustrated by an example in which low-density polyethylene production is simulated.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 21 条
[1]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[2]  
Box G.E.P., 1987, EMPIRICAL MODEL BUIL
[3]  
BOX GEP, 1978, STATISTICS EXPT
[4]   PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL [J].
GELADI, P ;
KOWALSKI, BR .
ANALYTICA CHIMICA ACTA, 1986, 185 :1-17
[5]  
Geladi P., 1988, J CHEMOMETR, V2, P231, DOI 10.1002/cem.1180020403
[6]  
Hoskuldsson A., 1988, J CHEMOMETR, V2, P211, DOI DOI 10.1002/CEM.1180020306
[7]  
Jolliffe I., 2002, PRINCIPAL COMPONENT
[8]   MULTIVARIABLE COMPUTER CONTROL OF A BUTANE HYDROGENOLYSIS REACTOR .2. DATA-COLLECTION, PARAMETER-ESTIMATION, AND STOCHASTIC DISTURBANCE IDENTIFICATION [J].
JUTAN, A ;
MACGREGOR, JF ;
WRIGHT, JD .
AICHE JOURNAL, 1977, 23 (05) :742-750
[9]  
KAPARISSIDES C, 1986, NATO ACI SERIES
[10]   MULTIVARIATE STATISTICAL MONITORING OF PROCESS OPERATING PERFORMANCE [J].
KRESTA, JV ;
MACGREGOR, JF ;
MARLIN, TE .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1991, 69 (01) :35-47