MOTION BY MEAN-CURVATURE AS THE SINGULAR LIMIT OF GINZBURG-LANDAU DYNAMICS

被引:169
作者
BRONSARD, L
KOHN, RV
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
[2] COURANT INST,NEW YORK,NY 10012
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/0022-0396(91)90147-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:211 / 237
页数:27
相关论文
共 40 条
[1]  
ALLEN S, 1979, ACTA METALL, V27, P1084
[2]  
ANGEANT S, IN PRESS J DIFFERENT
[3]  
ANGEANT S, IN PRESS ANN MATH
[4]  
[Anonymous], 1983, PHASE TRANSIT CRIT P
[5]  
BALDO S, 1990, ANN I H POINCARE-AN, V7, P37
[6]  
Brakke K. A., 1978, MATH NOTES+, V20
[7]   ON THE SLOWNESS OF PHASE-BOUNDARY MOTION IN ONE SPACE DIMENSION [J].
BRONSARD, L ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :983-997
[8]  
BRONSARD L, 1988, THESIS NYU
[9]   DYNAMICS OF LAYERED INTERFACES ARISING FROM PHASE BOUNDARIES [J].
CAGINALP, G ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :506-518
[10]   CONSERVED-PHASE FIELD SYSTEM - IMPLICATIONS FOR KINETIC UNDERCOOLING [J].
CAGINALP, G .
PHYSICAL REVIEW B, 1988, 38 (01) :789-791