Homogenization of parabolic nonlinear coupled problem in heat exchange

被引:0
作者
Chakib, Abdelkrim [1 ]
Hadri, Aissam [1 ]
Nachaoui, Abdeljalil [2 ]
Nachaoui, Mourad [1 ]
机构
[1] Univ Sultan Moulay Slimane, Lab Math & Applicat, Fac Sci & Tech, BP 523, Beni Mellal, Morocco
[2] Univ Nantes, CNRS, UMR 6629, ECN,Lab Math Jean Leray, F-44322 Nantes, France
来源
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES | 2015年 / 42卷 / 01期
关键词
Homogenization; Nonlinear parabolic coupled problem; Heat transfer; Composite medium; Stokes equation; Two scale convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work deals with the homogenization of heat transfer nonlinear parabolic problem in a periodic composite medium consisting in two-component (fluid/solid). This problem presents some difficulties due to the presence of a nonlinear Neumann condition modeling a radiative heat transfer on the interface between the two parts of the medium and to the fact that the problem is strongly coupled. In order to justify rigorously the homogenization process, we use two scale convergence. For this, we show first the existence and uniqueness of the homogenization problem by topological degree of Leray-Schauder, Then we establish the two scale convergence, and identify the limit problems.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 17 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Allaire G., 1989, THESIS, V6
[3]   HOMOGENIZATION OF A CONDUCTIVE, CONVECTIVE, AND RADIATIVE HEAT TRANSFER PROBLEM IN A HETEROGENEOUS DOMAIN [J].
Allaire, Gregoire ;
Habibi, Zakaria .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :1136-1178
[4]   AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION [J].
CHOULLI, M .
INVERSE PROBLEMS, 1994, 10 (05) :1123-1132
[5]   HOMOGENIZATION IN OPEN SETS WITH HOLES [J].
CIORANESCU, D ;
PAULIN, JSJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :590-607
[6]   Effective chemical processes in porous media [J].
Conca, C ;
Díaz, JI ;
Timofte, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1437-1462
[7]  
Conca C., 2004, ROMANIAN REP PHYS, V56, P613
[8]   Homogenization of semilinear parabolic equations in perforated domains [J].
Donato, P ;
Nabil, A .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (02) :143-156
[9]  
El Ganaoui K., 2006, THESIS
[10]   Homogenization of the cell cytoplasm: The calcium bidomain equations [J].
Goel, Pranay ;
Sneyd, James ;
Friedman, Avner .
MULTISCALE MODELING & SIMULATION, 2006, 5 (04) :1045-1062