RENORMING, PROXIMAL SUBSPACES, AND QUOTIENTS IN BANACH-SPACES

被引:1
作者
FRANCHETTI, C [1 ]
VESELY, L [1 ]
机构
[1] CHARLES UNIV, FAC MATH & PHYS, CS-18600 PRAGUE, CZECHOSLOVAKIA
关键词
D O I
10.1006/jmaa.1993.1075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Any Banach space can be equivalently renormed so that a given subspace is proximinal. We give a sufficient condition for an equivalent norm on 11(Γ) to satisfy the following property: every Banach space with the density character not greater than card (Γ) is isometric to a quotient of the renormed 11(Γ). Applications concerning the structure of quotients with proximinal subspaces are given. © 1993 Academic Press, Inc.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 9 条
[1]  
Banach S., 1933, STUD MATH, V4, P100
[2]   L-INFINITY-CO HAS NO EQUIVALENT STRICTLY CONVEX NORM [J].
BOURGAIN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (02) :225-226
[3]  
Holmes R. B., 1975, GEOMETRIC FUNCTIONAL
[4]   SMOOTH BANACH-SPACES, WEAK ASPLUND SPACES AND MONOTONE OR USCO MAPPINGS [J].
PREISS, D ;
PHELPS, RR ;
NAMIOKA, I .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 72 (03) :257-279
[5]  
Singer I., 1970, BEST APPROXIMATION N
[6]   SOME EXAMPLES CONCERNING NORMAL AND UNIFORM NORMAL STRUCTURE IN BANACH-SPACES [J].
SMITH, MA ;
TURETT, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :223-234
[7]   SOME EXAMPLES CONCERNING ROTUNDITY IN BANACH-SPACES [J].
SMITH, MA .
MATHEMATISCHE ANNALEN, 1978, 233 (02) :155-161
[8]   METRIC PROJECTIONS AFTER RENORMING [J].
VESELY, L .
JOURNAL OF APPROXIMATION THEORY, 1991, 66 (01) :72-82
[9]  
[No title captured]