ON THE EVOLUTION OF CURVES VIA A FUNCTION OF CURVATURE .1. THE CLASSICAL CASE

被引:93
作者
KIMIA, BB
TANNENBAUM, A
ZUCKER, SW
机构
[1] MCGILL UNIV,DEPT ELECT ENGN,MONTREAL H3A 2T5,QUEBEC,CANADA
[2] TECHNION ISRAEL INST TECHNOL,DEPT ELECT ENGN,IL-32000 HAIFA,ISRAEL
[3] UNIV MINNESOTA,DEPT ELECT ENGN,MINNEAPOLIS,MN 55455
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 英国医学研究理事会;
关键词
D O I
10.1016/0022-247X(92)90260-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of curve evolution as a function of its local geometry arises naturally in many physical applications. A special case of this problem is the curve shortening problem which has been extensively studied. Here, we consider the general problem and prove an existence theorem for the classical solution. The main theorem rests on lemmas that bound the evolution of length, curvature, and how far the curve can travel. © 1992.
引用
收藏
页码:438 / 458
页数:21
相关论文
共 15 条
  • [1] ANGENENT S, 1989, 8819 U WISC MAD TECH
  • [2] ANGENENT S, 1989, 8924 U WISC MAD TECH
  • [3] DYNAMICS OF INTERFACIAL PATTERN-FORMATION
    BENJACOB, E
    GOLDENFELD, N
    LANGER, JS
    SCHON, G
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (21) : 1930 - 1932
  • [4] GEOMETRICAL MODELS OF INTERFACE EVOLUTION
    BROWER, RC
    KESSLER, DA
    KOPLIK, J
    LEVINE, H
    [J]. PHYSICAL REVIEW A, 1984, 29 (03): : 1335 - 1342
  • [5] GAGE M, 1986, J DIFFER GEOM, V23, P69
  • [6] Gage M., 1986, CONT MATH, V51, P51
  • [7] GRAYSON MA, 1987, J DIFFER GEOM, V26, P285
  • [8] KIMIA BB, 1990, LECT NOTES COMPUT SC, V427, P402, DOI 10.1007/BFb0014889
  • [9] KIMIA BB, 1989, THESIS MCGILL U MONT
  • [10] INSTABILITIES AND PATTERN-FORMATION IN CRYSTAL-GROWTH
    LANGER, JS
    [J]. REVIEWS OF MODERN PHYSICS, 1980, 52 (01) : 1 - 28