Existence and Global Higher Integrability of Quasiminimizers among Minimizing Sequences of Variational Integrals

被引:0
作者
Chen, Chuei Yee [1 ,2 ,3 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
[3] Univ Oxford, Math Inst, Oxford, England
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2016年 / 10卷
关键词
Quasiminimizers; integrability; minimizing sequences; p-Dirichlet integral; variational problems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasiminimizers can be viewed as the perturbations of minimizers of variational integrals. We first establish the existence of good minimizing sequences of non-trivial variational integrals containing quasiminimizers of an inhomogeneous p-Dirichlet integral. Employing the concept of variational capacity, we show that the gradients of these quasiminimizers possess global higher integrability.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 22 条
[1]   POWER-TYPE QUASIMINIMIZERS [J].
Bjorn, Anders ;
Bjorn, Jana .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) :301-319
[2]  
Bjorn J, 2002, ILLINOIS J MATH, V46, P383
[3]  
BOYARSKII BV, 1955, DOKL AKAD NAUK SSSR+, V102, P661
[4]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[5]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[6]  
GIAQUINTA M, 1984, ANN I H POINCARE-AN, V1, P79
[7]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[8]  
Giusti E., 2003, DIRECT METHODS CALCU, DOI [10.1142/5002, DOI 10.1142/5002]
[9]  
Heinonen J., 1993, OXFORD MATH MONOGRAP
[10]  
Hilbert D., 1902, B AM MATH SOC, V8, P479, DOI DOI 10.1090/S0002-9904-1902-00923-3