Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System

被引:14
作者
Arifin, S. M. Niaz [1 ]
Arifin, Rumana Reaz [2 ]
Pitts, Dilkushi de Alwis [3 ]
Rahman, M. Sohel [4 ]
Nowreen, Sara [5 ]
Madey, Gregory R. [1 ]
Collins, Frank H. [1 ,6 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[3] Univ Notre Dame, Ctr Res Comp, Notre Dame, IN 46556 USA
[4] Bangladesh Univ Engn & Technol BUET, Dept Comp Sci & Engn CSE, Dhaka 1205, Bangladesh
[5] Bangladesh Univ Engn & Technol BUET, Inst Water & Flood Management IWFM, Dhaka 1000, Bangladesh
[6] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
关键词
landscape epidemiology; agent-based models; simulation; modeling; spatial analysis; hot spot analysis; Kriging;
D O I
10.3390/land4020378
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A landscape epidemiology modeling framework is presented which integrates the simulation outputs from an established spatial agent-based model (ABM) of malaria with a geographic information system (GIS). For a study area in Kenya, five landscape scenarios are constructed with varying coverage levels of two mosquito-control interventions. For each scenario, maps are presented to show the average distributions of three output indices obtained from the results of 7 5 0 simulation runs. Hot spot analysis is performed to detect statistically significant hot spots and cold spots. Additional spatial analysis is conducted using ordinary kriging with circular semivariograms for all scenarios. The integration of epidemiological simulation-based results with spatial analyses techniques within a single modeling framework can be a valuable tool for conducting a variety of disease control activities such as exploring new biological insights, monitoring epidemiological landscape changes, and guiding resource allocation for further investigation.
引用
收藏
页码:378 / 412
页数:35
相关论文
共 65 条
[1]   Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data [J].
Alexeeff, Stacey E. ;
Schwartz, Joel ;
Kloog, Itai ;
Chudnovsky, Alexandra ;
Koutrakis, Petros ;
Coull, Brent A. .
JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2015, 25 (02) :138-144
[2]   Indicator kriging modeling epidemiology of common bean anthracnose [J].
De Carvalho Alves M. ;
Pozza E.A. .
Applied Geomatics, 2010, 2 (2) :65-72
[3]  
Arifin S. M. Niaz, 2011, International Journal of Agent Technologies & Systems, V3, P17, DOI 10.4018/jats.2011070102
[4]  
Arifin S. M. N., 2010, P WINT SIM C WSC BAL
[5]  
Arifin S. M. N., 2013, P 25 EUR MOD SIM S E
[6]  
Arifin S. M. N., 2010, P SUMM COMP SIM C SC
[7]  
Arifin SMN, 2011, AGENT-DIRECTED SIMULATION SYMPOSIUM 2011 (ADS 2011) - 2011 SPRING SIMULATION MULTICONFERENCE - BK 1 OF 8, P92
[8]   An agent-based model of the population dynamics of Anopheles gambiae [J].
Arifin, S. M. Niaz ;
Zhou, Ying ;
Davis, Gregory J. ;
Gentile, James E. ;
Madey, Gregory R. ;
Collins, Frank H. .
MALARIA JOURNAL, 2014, 13
[9]   Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool [J].
Arifin, S. M. Niaz ;
Madey, Gregory R. ;
Collins, Frank H. .
MALARIA JOURNAL, 2013, 12
[10]   Semivariogram models for estimating fig fly population density throughout the year [J].
Batistella Pasini, Mauricio Paulo ;
Lucio, Alessandro Dal'Col ;
Cargnelutti Filho, Alberto .
PESQUISA AGROPECUARIA BRASILEIRA, 2014, 49 (07) :493-505