AN APPROXIMATION TO A SHARP TYPE SOLUTION OF A DENSITY-DEPENDENT REACTION-DIFFUSION EQUATION

被引:0
作者
GARDUNO, FS [1 ]
MAINI, PK [1 ]
机构
[1] UNIV OXFORD,CTR MATH BIOL,INST MATH,OXFORD OX1 3LB,ENGLAND
关键词
TRAVELING WAVES; WAVESPEED; PERTURBATION METHOD; SHARP SOLUTIONS; DENSITY-DEPENDENT DIFFUSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use a perturbation method to obtain an approximation to a saddle-saddle heteroclinic trajectory of an autonomous system of ordinary differential equations (ODEs) arising in the equation ut = [(u + epsilonu2)ux]x + u(1 - u) in the case of travelling wave solutions (t.w.s.): u(x, t) = phi(x - ct). We compare the approximate form of the solution profile and speed thus obtained with the actual solution of the full model and the calculated speed, respectively.
引用
收藏
页码:47 / 51
页数:5
相关论文
共 15 条
[1]  
Aronson D., 1980, P ADV SEM DYN MOD RE
[2]   TRAJECTORIES JOINING CRITICAL-POINTS [J].
ARTSTEIN, Z ;
SLEMROD, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (01) :40-62
[3]  
Beyn WJ, 1990, IMA J NUMER ANAL, V9, P379
[4]  
Billingham J., 1991, DYNAM STABIL SYST, V6, P33, DOI DOI 10.1080/02681119108806105
[5]   NUMERICAL COMPUTATION OF HETEROCLINIC ORBITS [J].
DOEDEL, EJ ;
FRIEDMAN, MJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 26 (1-2) :155-170
[6]  
Fisher R., 1937, ANN EUGEN, V7, P353, DOI DOI 10.1111/J.1469-1809.1937.TB02153.X
[7]  
KAPPOS VCL, 1981, UNPUB CONLEY INDEX A
[8]  
Kass-Peterson C., 1988, PHYSICA D, VD32, P461
[9]  
KOPPEL N, 1975, ADV MATH, V18, P306
[10]  
Murray J.D., 1989, MATH BIOL