ON NILPOTENT DERIVATIONS OF SEMIPRIME RINGS

被引:12
|
作者
GRZESZCZUK, P
机构
[1] Institute of Mathematics, University of Warsaw, Bialystok Division, 15-267 Bialystok
关键词
D O I
10.1016/0021-8693(92)90018-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study nilpotent derivations of semiprime rings. An associative derivation d: R → R is an additive mapping on a ring R satisfying d(xy) = d(x) y + xd(y) for all x, y ε{lunate} R. A derivation d: R → R is called inner if d= ad x for some x ε{lunate} R, where ad x(y) = xy - yx. It is proved that for a semiprime ring R, a nilpotent derivation d (with index of nilpotency depending on characteristic) has an extension to the inner derivation and is induced by a nilpotent element of the endomorphism ring End(IR, IR), where I is an essential ideal of R. This is a generalization of some known results due to Kharchenko, Martindale, Chung, and others. © 1992.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [41] Generalized reverse derivations on semiprime rings
    A. Aboubakr
    S. González
    Siberian Mathematical Journal, 2015, 56 : 199 - 205
  • [42] Semiprime Near-Rings with Derivations
    Jin, Xiaocan
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL I: COMPUTER SCIENCE AND ENGINEERING, 2008, : 107 - 110
  • [43] On certain subgroups of semiprime rings with derivations
    Wong, TL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1961 - 1968
  • [44] Generalized skew derivations on semiprime rings
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05) : 927 - 939
  • [45] Action of higher derivations on semiprime rings
    Ali, Shakir
    Varshney, Vaishali
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 7 - 19
  • [46] Generalized derivations in prime and semiprime rings
    Huang, Shuliang
    Rehman, Nadeem ur
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 29 - 34
  • [47] On semiprime rings with multiplicative (generalized)-derivations
    Khan S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1): : 119 - 128
  • [48] GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
    Ferreira, Bruno L. M.
    Ferreira, Ruth N.
    Guzzo, Henrique, Jr.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 36 - 43
  • [49] Derivations on multilinear polynomials in semiprime rings
    De Filippis, V
    Di Vincenzo, OM
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (12) : 5975 - 5983
  • [50] ON LIE IDEALS AND DERIVATIONS OF SEMIPRIME RINGS
    AVRAAMOVA, OD
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (04): : 73 - 74