ON NILPOTENT DERIVATIONS OF SEMIPRIME RINGS

被引:12
|
作者
GRZESZCZUK, P
机构
[1] Institute of Mathematics, University of Warsaw, Bialystok Division, 15-267 Bialystok
关键词
D O I
10.1016/0021-8693(92)90018-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study nilpotent derivations of semiprime rings. An associative derivation d: R → R is an additive mapping on a ring R satisfying d(xy) = d(x) y + xd(y) for all x, y ε{lunate} R. A derivation d: R → R is called inner if d= ad x for some x ε{lunate} R, where ad x(y) = xy - yx. It is proved that for a semiprime ring R, a nilpotent derivation d (with index of nilpotency depending on characteristic) has an extension to the inner derivation and is induced by a nilpotent element of the endomorphism ring End(IR, IR), where I is an essential ideal of R. This is a generalization of some known results due to Kharchenko, Martindale, Chung, and others. © 1992.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [21] Derivations of differentially semiprime rings
    Al Khalaf, Ahmad
    Taha, Iman
    Artemovych, Orest D.
    Aljouiiee, Abdullah
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)
  • [22] Note on derivations of semiprime rings
    Lee, TK
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (10) : 4819 - 4828
  • [23] DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Argac, Nurcan
    Inceboz, Hulya G.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 997 - 1005
  • [24] ON DERIVATIONS AND COMMUTATIVITY IN SEMIPRIME RINGS
    DENG, Q
    BELL, HE
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (10) : 3705 - 3713
  • [25] GENERALIZED DERIVATIONS ON SEMIPRIME RINGS
    De Filippis, Vincenzo
    Huang, Shuliang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1253 - 1259
  • [26] On Skew Derivations in Semiprime Rings
    Liu, Cheng-Kai
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (06) : 1561 - 1576
  • [27] On a pair of (α, β)-derivations of semiprime rings
    Chaudhry M.A.
    Thaheem A.-B.
    aequationes mathematicae, 2005, 69 (3) : 224 - 230
  • [28] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [29] A Note on Derivations in Semiprime Rings
    张淑华
    魏峰
    NortheasternMathematicalJournal, 1999, (04) : 486 - 488
  • [30] SEMIPRIME RINGS WITH HYPERCENTRAL DERIVATIONS
    LEE, TK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (04): : 445 - 449