ON NILPOTENT DERIVATIONS OF SEMIPRIME RINGS

被引:12
|
作者
GRZESZCZUK, P
机构
[1] Institute of Mathematics, University of Warsaw, Bialystok Division, 15-267 Bialystok
关键词
D O I
10.1016/0021-8693(92)90018-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study nilpotent derivations of semiprime rings. An associative derivation d: R → R is an additive mapping on a ring R satisfying d(xy) = d(x) y + xd(y) for all x, y ε{lunate} R. A derivation d: R → R is called inner if d= ad x for some x ε{lunate} R, where ad x(y) = xy - yx. It is proved that for a semiprime ring R, a nilpotent derivation d (with index of nilpotency depending on characteristic) has an extension to the inner derivation and is induced by a nilpotent element of the endomorphism ring End(IR, IR), where I is an essential ideal of R. This is a generalization of some known results due to Kharchenko, Martindale, Chung, and others. © 1992.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [11] On Derivations in Semiprime Rings
    Shakir Ali
    Huang Shuliang
    Algebras and Representation Theory, 2012, 15 : 1023 - 1033
  • [12] DERIVATIONS ON SEMIPRIME Γ-RINGS
    Khan, Abdul Rauf
    Javaid, Imran
    Chaudhry, Muhammad Anwar
    UTILITAS MATHEMATICA, 2013, 90 : 171 - 185
  • [13] On Derivations in Semiprime Rings
    Ali, Shakir
    Huang Shuliang
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) : 1023 - 1033
  • [14] Derivations on semiprime rings
    Vukman, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 353 - 359
  • [15] JORDAN DERIVATIONS ON SEMIPRIME RINGS
    BRESAR, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (04) : 1003 - 1006
  • [16] On Semiprime Rings with Generalized Derivations
    Khan, Mohd Rais
    Hasnain, Mohammad Mueenul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04): : 565 - 571
  • [17] On prime and semiprime rings with derivations
    Argaç, N
    ALGEBRA COLLOQUIUM, 2006, 13 (03) : 371 - 380
  • [18] SEMIPRIME RINGS WITH NILPOTENT DERIVATIVES
    CHUNG, LO
    LUH, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04): : 415 - 421
  • [19] On Semiprime Rings with Generalized Derivations
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 25 - 32
  • [20] On Skew Derivations in Semiprime Rings
    Cheng-Kai Liu
    Algebras and Representation Theory, 2013, 16 : 1561 - 1576