An Algebraic Weak Factorisation System on 01-Substitution Sets: A Constructive Proof

被引:9
作者
Swan, Andrew [1 ]
机构
[1] Univ Amsterdam, Inst Log Language & Computat, Amsterdam, Netherlands
关键词
cubical sets; nominal sets; algebraic weak factorisation systems; constructive mathematics; type theory;
D O I
10.4115/jla.2016.8.1
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
We will construct an algebraic weak factorisation system on the category of 01-substitution sets such that the R-algebras are precisely the Kan fibrations together with a choice of Kan filling operation. The proof is based on Garner's small object argument for algebraic weak factorisation systems. In order to ensure the proof is valid constructively, rather than applying the general small object argument, we give a direct proof based on the same ideas. We use the resulting awfs and the notion of path object to explain why the J-computation rule is absent from the original cubical set model. We will define an alternative path object, which can be used to implement the J-computation rule in cubical sets.
引用
收藏
页数:35
相关论文
共 17 条
[1]   Homotopy theoretic models of identity types [J].
Awodey, Steve ;
Warren, Michael A. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :45-55
[2]  
Bezem Marc, 2013, 19 INT C TYP PROOFS, V26, P107
[3]  
BISHOP EA, 1985, GRUNDLEHREN MATH WIS, V279
[4]  
Choudhury P, 2015, THESIS
[5]  
Cohen C, 2015, ARXIV161102108
[6]   Understanding the Small Object Argument [J].
Garner, Richard .
APPLIED CATEGORICAL STRUCTURES, 2009, 17 (03) :247-285
[7]  
Grandis M, 2006, ARCH MATH-BRNO, V42, P397
[8]  
Huber S., 2015, THESIS
[9]  
Palmgren E, 2009, SYNTH LIBR, V341, P237, DOI 10.1007/978-1-4020-8926-8_12
[10]  
Pitts AM, 2013, CAM T THEOR, V57, P1, DOI 10.1017/CBO9781139084673