NONPHOTOCHEMICAL QUENCHING OF F0 IN LEAVES IS EMISSION WAVELENGTH DEPENDENT - CONSEQUENCES FOR QUENCHING ANALYSIS AND ITS INTERPRETATION

被引:128
作者
GENTY, B [1 ]
WONDERS, J [1 ]
BAKER, NR [1 ]
机构
[1] UNIV ESSEX,DEPT BIOL,COLCHESTER CO4 3SQ,ESSEX,ENGLAND
关键词
chlorophyll fluorescence; non-photochemical quenching; photosystem II; quenching analyses;
D O I
10.1007/BF00047085
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of light-induced non-photochemical quenching on the minimal Fo, and variable Fv, fluorescence emissions at 690 and 730 nm in leaves were determined. Non-photochemical quenching of Fo, but not Fv, was found to be dependent upon the wavelength of emission, and was greater at 690 nm than at 730 nm. For emission at 730, compared to at 690 nm, approx. 30% of Fo was not affected by non-photochemical quenching processes in leaves of C3 plants; in maize leaves this was found to be approx. 50%. The data indicate that a substantial proportion of the pigments contributing to Fo emission at 730 nm are not quenched by light-induced, non-photochemical quenching processes and that there are large differences in the pigment matrices contributing to Fo and Fv emissions at 730 nm, compared to those at 690 nm. These findings have important implications for the accurate estimation and interpretation of non-photochemical quenching of fluorescence parameters and their use in the calculation of photochemical efficiencies in leaves. Measurements of fluorescence emissions at wavelengths above 700 nm are likely to give rise to significant errors when used for determinations of photochemical and non-photochemical quenching parameters. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 15 条
[1]   ENERGY-DEPENDENT QUENCHING OF DARK-LEVEL CHLOROPHYLL FLUORESCENCE IN INTACT LEAVES [J].
BILGER, W ;
SCHREIBER, U .
PHOTOSYNTHESIS RESEARCH, 1986, 10 (03) :303-308
[2]   ENERGY-DISTRIBUTION IN PHOTO-CHEMICAL APPARATUS OF PHOTOSYNTHESIS [J].
BUTLER, WL .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1978, 29 :345-378
[3]   INACTIVE PHOTOSYSTEM-II COMPLEXES IN LEAVES - TURNOVER RATE AND QUANTITATION [J].
CHYLLA, RA ;
WHITMARSH, J .
PLANT PHYSIOLOGY, 1989, 90 (02) :765-772
[4]  
DUYSENS LNM, 1979, CHLOROPHYLL ORG ENER, V61, P323
[5]  
EDWARDS GE, 1976, METABOLISM PLANT PRO, P83
[6]   THE RELATIONSHIP BETWEEN THE QUANTUM YIELD OF PHOTOSYNTHETIC ELECTRON-TRANSPORT AND QUENCHING OF CHLOROPHYLL FLUORESCENCE [J].
GENTY, B ;
BRIANTAIS, JM ;
BAKER, NR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 990 (01) :87-92
[7]  
GENTY B, 1990, IN PRESS PHOTOSYNTH
[8]   STUDIES ON THE INDUCTION OF CHLOROPHYLL FLUORESCENCE IN ISOLATED BARLEY PROTOPLASTS .4. RESOLUTION OF NON-PHOTOCHEMICAL QUENCHING [J].
HORTON, P ;
HAGUE, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 932 (01) :107-115
[9]   QUENCHING OF CHLOROPHYLL FLUORESCENCE AND PRIMARY PHOTOCHEMISTRY IN CHLOROPLASTS BY DIBROMOTHYMOQUINONE [J].
KITAJIMA, M ;
BUTLER, WL .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 376 (01) :105-115
[10]   PHOTOINDUCED QUENCHING OF CHLOROPHYLL FLUORESCENCE IN INTACT CHLOROPLASTS AND ALGAE - RESOLUTION INTO 2 COMPONENTS [J].
KRAUSE, GH ;
VERNOTTE, C ;
BRIANTAIS, JM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 679 (01) :116-124